1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/dia_matrix.h>
#include <cusp/detail/device/common.h>
#include <cusp/detail/device/utils.h>
#include <cusp/detail/device/texture.h>
#include <thrust/functional.h>
#include <thrust/experimental/arch.h>
namespace cusp
{
namespace detail
{
namespace device
{
////////////////////////////////////////////////////////////////////////
// DIA SpMV kernels
///////////////////////////////////////////////////////////////////////
//
// Diagonal matrices arise in grid-based discretizations using stencils.
// For instance, the standard 5-point discretization of the two-dimensional
// Laplacian operator has the stencil:
// [ 0 -1 0 ]
// [ -1 4 -1 ]
// [ 0 -1 0 ]
// and the resulting DIA format has 5 diagonals.
//
// spmv_dia
// Each thread computes y[i] += A[i,:] * x
// (the dot product of the i-th row of A with the x vector)
//
// spmv_dia_tex
// Same as spmv_dia, except x is accessed via texture cache.
//
template <unsigned int BLOCK_SIZE, bool UseCache,
typename IndexType,
typename ValueType,
typename UnaryFunction,
typename BinaryFunction1,
typename BinaryFunction2>
__global__
void spmv_dia_kernel(const IndexType num_rows,
const IndexType num_cols,
const IndexType num_diagonals,
const IndexType stride,
const IndexType * diagonal_offsets,
const ValueType * values,
const ValueType * x,
ValueType * y,
UnaryFunction initialize,
BinaryFunction1 combine,
BinaryFunction2 reduce)
{
__shared__ IndexType offsets[BLOCK_SIZE];
const IndexType thread_id = blockDim.x * blockIdx.x + threadIdx.x;
const IndexType grid_size = gridDim.x * blockDim.x;
// load diagonal offsets into shared memory
if(threadIdx.x < num_diagonals)
offsets[threadIdx.x] = diagonal_offsets[threadIdx.x];
__syncthreads();
for(IndexType row = thread_id; row < num_rows; row += grid_size)
{
ValueType sum = initialize(y[row]);
IndexType offset = row;
for(IndexType n = 0; n < num_diagonals; n++)
{
const IndexType col = row + offsets[n];
if(col >= 0 && col < num_cols)
{
const ValueType A_ij = values[offset];
sum = reduce(sum, combine(A_ij, fetch_x<UseCache>(col, x)));
}
offset += stride;
}
y[row] = sum;
}
}
template <bool UseCache, typename IndexType, typename ValueType>
void __spmv_dia(const cusp::dia_matrix<IndexType,ValueType,cusp::device_memory>& dia,
const ValueType * x,
ValueType * y)
{
const unsigned int BLOCK_SIZE = 256;
const unsigned int MAX_BLOCKS = MAX_THREADS / BLOCK_SIZE;
// const unsigned int MAX_BLOCKS = thrust::experimental::arch::max_active_blocks(spmv_dia_kernel<IndexType, ValueType, BLOCK_SIZE, UseCache>, BLOCK_SIZE, (size_t) 0);
const unsigned int NUM_BLOCKS = std::min(MAX_BLOCKS, DIVIDE_INTO(dia.num_rows, BLOCK_SIZE));
const IndexType stride = dia.values.num_rows;
if (UseCache)
bind_x(x);
// the dia_kernel only handles BLOCK_SIZE diagonals at a time
for(unsigned int base = 0; base < dia.values.num_cols; base += BLOCK_SIZE)
{
// TODO break this loop up for general initialize()
IndexType num_diagonals = std::min<unsigned int>(dia.values.num_cols - base, BLOCK_SIZE);
spmv_dia_kernel<BLOCK_SIZE, UseCache> <<<NUM_BLOCKS, BLOCK_SIZE>>>
(dia.num_rows, dia.num_cols, num_diagonals, stride,
thrust::raw_pointer_cast(&dia.diagonal_offsets[0]) + base,
thrust::raw_pointer_cast(&dia.values.values[0]) + base * stride,
x, y,
thrust::identity<ValueType>(), thrust::multiplies<ValueType>(), thrust::plus<ValueType>());
}
if (UseCache)
unbind_x(x);
}
template <typename IndexType, typename ValueType>
void spmv_dia(const cusp::dia_matrix<IndexType,ValueType,cusp::device_memory>& dia,
const ValueType * x,
ValueType * y)
{
__spmv_dia<false>(dia, x, y);
}
template <typename IndexType, typename ValueType>
void spmv_dia_tex(const cusp::dia_matrix<IndexType,ValueType,cusp::device_memory>& dia,
const ValueType * x,
ValueType * y)
{
__spmv_dia<true>(dia, x, y);
}
template <typename IndexType, typename ValueType>
void spmv(const cusp::dia_matrix<IndexType,ValueType,cusp::device_memory>& dia,
const ValueType * x,
ValueType * y)
{
spmv_dia(dia, x, y);
}
template <typename IndexType, typename ValueType>
void spmv_tex(const cusp::dia_matrix<IndexType,ValueType,cusp::device_memory>& dia,
const ValueType * x,
ValueType * y)
{
spmv_dia_tex(dia, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp
|