1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cusp/array1d.h>
#include <cusp/detail/format_utils.h>
#include <thrust/gather.h>
#include <thrust/scan.h>
#include <thrust/scatter.h>
#include <thrust/transform.h>
#include <thrust/reduce.h>
#include <thrust/inner_product.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/iterator/permutation_iterator.h>
#include <list>
namespace cusp
{
namespace detail
{
namespace device
{
template <typename Matrix1,
typename Matrix2,
typename Matrix3,
typename Array1,
typename Array2>
void coo_spmm_helper(size_t workspace_size,
size_t begin_row,
size_t end_row,
size_t begin_segment,
size_t end_segment,
const Matrix1& A,
const Matrix2& B,
Matrix3& C,
const Array1& B_row_offsets,
const Array1& segment_lengths,
const Array1& output_ptr,
Array1& A_gather_locations,
Array1& B_gather_locations,
Array1& I,
Array1& J,
Array2& V)
{
typedef typename Array1::value_type IndexType;
typedef typename Array2::value_type ValueType;
A_gather_locations.resize(workspace_size);
B_gather_locations.resize(workspace_size);
I.resize(workspace_size);
J.resize(workspace_size);
V.resize(workspace_size);
// nothing to do
if (workspace_size == 0)
{
C.resize(A.num_rows, B.num_cols, 0);
return;
}
// compute gather locations of intermediate format
thrust::fill(A_gather_locations.begin(), A_gather_locations.end(), 0);
thrust::scatter_if(thrust::counting_iterator<IndexType>(begin_segment), thrust::counting_iterator<IndexType>(end_segment),
output_ptr.begin() + begin_segment,
segment_lengths.begin() + begin_segment,
A_gather_locations.begin() - output_ptr[begin_segment]);
thrust::inclusive_scan(A_gather_locations.begin(), A_gather_locations.end(), A_gather_locations.begin(), thrust::maximum<IndexType>());
// compute gather locations of intermediate format
thrust::fill(B_gather_locations.begin(), B_gather_locations.end(), 1);
thrust::scatter_if(thrust::make_permutation_iterator(B_row_offsets.begin(), A.column_indices.begin()) + begin_segment,
thrust::make_permutation_iterator(B_row_offsets.begin(), A.column_indices.begin()) + end_segment,
output_ptr.begin() + begin_segment,
// thrust::make_transform_iterator(output_ptr.begin(), subtract_constant<IndexType>(begin + begin_segment,
segment_lengths.begin() + begin_segment,
B_gather_locations.begin() - output_ptr[begin_segment]);
thrust::inclusive_scan_by_key(A_gather_locations.begin(), A_gather_locations.end(),
B_gather_locations.begin(),
B_gather_locations.begin());
thrust::gather(A_gather_locations.begin(), A_gather_locations.end(),
A.row_indices.begin(),
I.begin());
thrust::gather(B_gather_locations.begin(), B_gather_locations.end(),
B.column_indices.begin(),
J.begin());
thrust::transform(thrust::make_permutation_iterator(A.values.begin(), A_gather_locations.begin()),
thrust::make_permutation_iterator(A.values.begin(), A_gather_locations.end()),
thrust::make_permutation_iterator(B.values.begin(), B_gather_locations.begin()),
V.begin(),
thrust::multiplies<ValueType>());
// sort (I,J,V) tuples by (I,J)
cusp::detail::sort_by_row_and_column(I, J, V);
// compute unique number of nonzeros in the output
IndexType NNZ = thrust::inner_product(thrust::make_zip_iterator(thrust::make_tuple(I.begin(), J.begin())),
thrust::make_zip_iterator(thrust::make_tuple(I.end (), J.end())) - 1,
thrust::make_zip_iterator(thrust::make_tuple(I.begin(), J.begin())) + 1,
IndexType(0),
thrust::plus<IndexType>(),
thrust::not_equal_to< thrust::tuple<IndexType,IndexType> >()) + 1;
// allocate space for output
C.resize(A.num_rows, B.num_cols, NNZ);
// sum values with the same (i,j)
thrust::reduce_by_key
(thrust::make_zip_iterator(thrust::make_tuple(I.begin(), J.begin())),
thrust::make_zip_iterator(thrust::make_tuple(I.end(), J.end())),
V.begin(),
thrust::make_zip_iterator(thrust::make_tuple(C.row_indices.begin(), C.column_indices.begin())),
C.values.begin(),
thrust::equal_to< thrust::tuple<IndexType,IndexType> >(),
thrust::plus<ValueType>());
}
template <typename Matrix1,
typename Matrix2,
typename Matrix3>
void spmm_coo(const Matrix1& A,
const Matrix2& B,
Matrix3& C)
{
CUSP_PROFILE_SCOPED();
typedef typename Matrix3::index_type IndexType;
typedef typename Matrix3::value_type ValueType;
typedef typename Matrix3::memory_space MemorySpace;
// check whether matrices are empty
if (A.num_entries == 0 || B.num_entries == 0)
{
C.resize(A.num_rows, B.num_cols, 0);
return;
}
// compute row offsets for B
cusp::array1d<IndexType,MemorySpace> B_row_offsets(B.num_rows + 1);
cusp::detail::indices_to_offsets(B.row_indices, B_row_offsets);
// compute row lengths for B
cusp::array1d<IndexType,MemorySpace> B_row_lengths(B.num_rows);
thrust::transform(B_row_offsets.begin() + 1, B_row_offsets.end(), B_row_offsets.begin(), B_row_lengths.begin(), thrust::minus<IndexType>());
// for each element A(i,j) compute the number of nonzero elements in B(j,:)
cusp::array1d<IndexType,MemorySpace> segment_lengths(A.num_entries);
thrust::gather(A.column_indices.begin(), A.column_indices.end(),
B_row_lengths.begin(),
segment_lengths.begin());
// output pointer
cusp::array1d<IndexType,MemorySpace> output_ptr(A.num_entries + 1);
thrust::exclusive_scan(segment_lengths.begin(), segment_lengths.end(),
output_ptr.begin(),
IndexType(0));
output_ptr[A.num_entries] = output_ptr[A.num_entries - 1] + segment_lengths[A.num_entries - 1]; // XXX is this necessary?
size_t coo_num_nonzeros = output_ptr[A.num_entries];
size_t workspace_capacity = thrust::min<size_t>(coo_num_nonzeros, 16 << 20);
{
// TODO abstract this
size_t free, total;
cudaMemGetInfo(&free, &total);
// divide free bytes by the size of each workspace unit
size_t max_workspace_capacity = free / (4 * sizeof(IndexType) + sizeof(ValueType));
// use at most one third of the remaining capacity
workspace_capacity = thrust::min<size_t>(max_workspace_capacity / 3, workspace_capacity);
}
// workspace arrays
cusp::array1d<IndexType,MemorySpace> A_gather_locations;
cusp::array1d<IndexType,MemorySpace> B_gather_locations;
cusp::array1d<IndexType,MemorySpace> I;
cusp::array1d<IndexType,MemorySpace> J;
cusp::array1d<ValueType,MemorySpace> V;
if (coo_num_nonzeros <= workspace_capacity)
{
// compute C = A * B in one step
size_t begin_row = 0;
size_t end_row = A.num_rows;
size_t begin_segment = 0;
size_t end_segment = A.num_entries;
size_t workspace_size = coo_num_nonzeros;
coo_spmm_helper(workspace_size,
begin_row, end_row,
begin_segment, end_segment,
A, B, C,
B_row_offsets,
segment_lengths, output_ptr,
A_gather_locations, B_gather_locations,
I, J, V);
}
else
{
// decompose C = A * B into several C[slice,:] = A[slice,:] * B operations
typedef typename cusp::coo_matrix<IndexType,ValueType,MemorySpace> Container;
typedef typename std::list<Container> ContainerList;
// storage for C[slice,:] partial results
ContainerList slices;
// compute row offsets for A
cusp::array1d<IndexType,MemorySpace> A_row_offsets(A.num_rows + 1);
cusp::detail::indices_to_offsets(A.row_indices, A_row_offsets);
// compute worspace requirements for each row
cusp::array1d<IndexType,MemorySpace> cummulative_row_workspace(A.num_rows);
thrust::gather(A_row_offsets.begin() + 1, A_row_offsets.end(),
output_ptr.begin(),
cummulative_row_workspace.begin());
size_t begin_row = 0;
size_t total_work = 0;
while (begin_row < size_t(A.num_rows))
{
Container C_slice;
// find largest end_row such that the capacity of [begin_row, end_row) fits in the workspace_capacity
size_t end_row = thrust::upper_bound(cummulative_row_workspace.begin() + begin_row, cummulative_row_workspace.end(),
total_work + IndexType(workspace_capacity)) - cummulative_row_workspace.begin();
size_t begin_segment = A_row_offsets[begin_row];
size_t end_segment = A_row_offsets[end_row];
// TODO throw exception signaling that there is insufficient memory (not necessarily bad_alloc)
//if (begin_row == end_row)
// // workspace wasn't large enough, throw cusp::memory_allocation_failure?
size_t workspace_size = output_ptr[end_segment] - output_ptr[begin_segment];
total_work += workspace_size;
// TODO remove these when an exception is in place
assert(end_row > begin_row);
assert(workspace_size <= workspace_capacity);
coo_spmm_helper(workspace_size,
begin_row, end_row,
begin_segment, end_segment,
A, B, C_slice,
B_row_offsets,
segment_lengths, output_ptr,
A_gather_locations, B_gather_locations,
I, J, V);
slices.push_back(Container());
slices.back().swap(C_slice);
begin_row = end_row;
}
// deallocate workspace
A_gather_locations.clear(); A_gather_locations.shrink_to_fit();
B_gather_locations.clear(); B_gather_locations.shrink_to_fit();
I.clear(); I.shrink_to_fit();
J.clear(); J.shrink_to_fit();
V.clear(); V.shrink_to_fit();
// compute total output size
size_t C_num_entries = 0;
for(typename ContainerList::iterator iter = slices.begin(); iter != slices.end(); ++iter)
C_num_entries += iter->num_entries;
// resize output
C.resize(A.num_rows, B.num_cols, C_num_entries);
// copy slices into output
size_t base = 0;
for(typename ContainerList::iterator iter = slices.begin(); iter != slices.end(); ++iter)
{
thrust::copy(iter->row_indices.begin(), iter->row_indices.end(), C.row_indices.begin() + base);
thrust::copy(iter->column_indices.begin(), iter->column_indices.end(), C.column_indices.begin() + base);
thrust::copy(iter->values.begin(), iter->values.end(), C.values.begin() + base);
base += iter->num_entries;
}
}
}
} // end namespace device
} // end namespace detail
} // end namespace cusp
|