File: coo_flat.h

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (383 lines) | stat: -rw-r--r-- 16,873 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*
 *  Copyright 2008-2009 NVIDIA Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#pragma once

#include <thrust/extrema.h>

#include <cusp/detail/device/arch.h>
#include <cusp/detail/device/common.h>
#include <cusp/detail/device/utils.h>
#include <cusp/detail/device/texture.h>
#include <cusp/detail/device/spmv/coo_serial.h>

#include <thrust/device_ptr.h>

// Note: Unlike the other kernels this kernel implements y += A*x

namespace cusp
{
namespace detail
{
namespace device
{

// segmented reduction in shared memory
template <typename IndexType, typename ValueType>
__device__ ValueType segreduce_warp(const IndexType thread_lane, IndexType row, ValueType val, IndexType * rows, ValueType * vals)
{
    rows[threadIdx.x] = row;
    vals[threadIdx.x] = val;

    if( thread_lane >=  1 && row == rows[threadIdx.x -  1] ) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  1]; } 
    if( thread_lane >=  2 && row == rows[threadIdx.x -  2] ) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  2]; }
    if( thread_lane >=  4 && row == rows[threadIdx.x -  4] ) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  4]; }
    if( thread_lane >=  8 && row == rows[threadIdx.x -  8] ) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  8]; }
    if( thread_lane >= 16 && row == rows[threadIdx.x - 16] ) { vals[threadIdx.x] = val = val + vals[threadIdx.x - 16]; }

    return val;
}

template <typename IndexType, typename ValueType>
__device__ void segreduce_block(const IndexType * idx, ValueType * val)
{
    ValueType left = 0;
    if( threadIdx.x >=   1 && idx[threadIdx.x] == idx[threadIdx.x -   1] ) { left = val[threadIdx.x -   1]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();  
    if( threadIdx.x >=   2 && idx[threadIdx.x] == idx[threadIdx.x -   2] ) { left = val[threadIdx.x -   2]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
    if( threadIdx.x >=   4 && idx[threadIdx.x] == idx[threadIdx.x -   4] ) { left = val[threadIdx.x -   4]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
    if( threadIdx.x >=   8 && idx[threadIdx.x] == idx[threadIdx.x -   8] ) { left = val[threadIdx.x -   8]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
    if( threadIdx.x >=  16 && idx[threadIdx.x] == idx[threadIdx.x -  16] ) { left = val[threadIdx.x -  16]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
    if( threadIdx.x >=  32 && idx[threadIdx.x] == idx[threadIdx.x -  32] ) { left = val[threadIdx.x -  32]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();  
    if( threadIdx.x >=  64 && idx[threadIdx.x] == idx[threadIdx.x -  64] ) { left = val[threadIdx.x -  64]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
    if( threadIdx.x >= 128 && idx[threadIdx.x] == idx[threadIdx.x - 128] ) { left = val[threadIdx.x - 128]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
    if( threadIdx.x >= 256 && idx[threadIdx.x] == idx[threadIdx.x - 256] ) { left = val[threadIdx.x - 256]; } __syncthreads(); val[threadIdx.x] += left; left = 0; __syncthreads();
}


//////////////////////////////////////////////////////////////////////////////
// COO SpMV kernel which flattens data irregularity (segmented reduction)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_coo_flat
//   The input coo_matrix must be sorted by row.  Columns within each row
//   may appear in any order and duplicate entries are also acceptable.
//   This sorted COO format is easily obtained by expanding the row pointer
//   of a CSR matrix (csr.Ap) into proper row indices and then copying 
//   the arrays containing the CSR column indices (csr.Aj) and nonzero values
//   (csr.Ax) verbatim.  A segmented reduction is used to compute the per-row
//   sums.
//
// spmv_coo_flat_tex
//   Same as spmv_coo_flat, except that the texture cache is 
//   used for accessing the x vector.
//


// spmv_coo_flat_kernel
//
// In this kernel each warp processes an interval of the nonzero values.
// For example, if the matrix contains 128 nonzero values and there are
// two warps and interval_size is 64, then the first warp (warp_id == 0)
// will process the first set of 64 values (interval [0, 64)) and the 
// second warp will process // the second set of 64 values 
// (interval [64, 128)).  Note that the  number of nonzeros is not always
// a multiple of 32 (the warp size) or 32 * the number of active warps,
// so the last active warp will not always process a "full" interval of
// interval_size.
// 
// The first thread in each warp (thread_lane == 0) has a special role:
// it is responsible for keeping track of the "carry" values from one
// iteration to the next.  The carry values consist of the row index and
// partial sum from the previous batch of 32 elements.  In the example 
// mentioned before with two warps and 128 nonzero elements, the first
// warp iterates twice and looks at the carry of the first iteration to
// decide whether to include this partial sum into the current batch.
// Specifically, if a row extends over a 32-element boundary, then the
// partial sum is carried over into the new 32-element batch.  If,
// on the other hand, the _last_ row index of the previous batch (the carry)
// differs from the _first_ row index of the current batch (the row
// read by the thread with thread_lane == 0), then the partial sum
// is written out to memory.
//
// Each warp iterates over its interval, processing 32 elements at a time.
// For each batch of 32 elements, the warp does the following
//  1) Fetch the row index, column index, and value for a matrix entry.  These
//     values are loaded from I[n], J[n], and V[n] respectively.
//     The row entry is stored in the shared memory array idx.
//  2) Fetch the corresponding entry from the input vector.  Specifically, for a 
//     nonzero entry (i,j) in the matrix, the thread must load the value x[j]
//     from memory.  We use the function fetch_x to control whether the texture
//     cache is used to load the value (UseCache == True) or whether a normal
//     global load is used (UseCache == False).
//  3) The matrix value A(i,j) (which was stored in V[n]) is multiplied by the 
//     value x[j] and stored in the shared memory array val.
//  4) The first thread in the warp (thread_lane == 0) considers the "carry"
//     row index and either includes the carried sum in its own sum, or it
//     updates the output vector (y) with the carried sum.
//  5) With row indices in the shared array idx and sums in the shared array
//     val, the warp conducts a segmented scan.  The segmented scan operation
//     looks at the row entries for each thread (stored in idx) to see whether
//     two values belong to the same segment (segments correspond to matrix rows).
//     Consider the following example which consists of 3 segments
//     (note: this example uses a warp size of 16 instead of the usual 32)
//
//           0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15   # thread_lane
//     idx [ 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]  # row indices
//     val [ 4, 6, 5, 0, 8, 3, 2, 8, 3, 1, 4, 9, 2, 5, 2, 4]  # A(i,j) * x(j)
//
//     After the segmented scan the result will be
//
//     val [ 4,10,15,15,23,26, 2,10,13,14, 4,13,15,20,22,26]  # A(i,j) * x(j)
//
//  6) After the warp computes the segmented scan operation 
//     each thread except for the last (thread_lane == 31) looks
//     at the row index of the next thread (threadIdx.x + 1) to 
//     see if the segment ends here, or continues into the 
//     next thread.  The thread at the end of the segment writes
//     the sum into the output vector (y) at the corresponding row
//     index.
//  7) The last thread in each warp (thread_lane == 31) writes
//     its row index and partial sum into the designated spote in the
//     carry_idx and carry_val arrays.  The carry arrays are indexed
//     by warp_lane which is a number in [0, BLOCK_SIZE / 32).
//  
//  These steps are repeated until the warp reaches the end of its interval.
//  The carry values at the end of each interval are written to arrays 
//  temp_rows and temp_vals, which are processed by a second kernel.
//
template <typename IndexType, typename ValueType, unsigned int BLOCK_SIZE, bool UseCache>
__launch_bounds__(BLOCK_SIZE,1)
__global__ void
spmv_coo_flat_kernel(const IndexType num_nonzeros,
                     const IndexType interval_size,
                     const IndexType * I, 
                     const IndexType * J, 
                     const ValueType * V, 
                     const ValueType * x, 
                           ValueType * y,
                           IndexType * temp_rows,
                           ValueType * temp_vals)
{
    __shared__ volatile IndexType rows[48 *(BLOCK_SIZE/32)];
    __shared__ volatile ValueType vals[BLOCK_SIZE];

    const IndexType thread_id   = BLOCK_SIZE * blockIdx.x + threadIdx.x;                         // global thread index
    const IndexType thread_lane = threadIdx.x & (WARP_SIZE-1);                                   // thread index within the warp
    const IndexType warp_id     = thread_id   / WARP_SIZE;                                       // global warp index

    const IndexType interval_begin = warp_id * interval_size;                                    // warp's offset into I,J,V
    const IndexType interval_end   = thrust::min(interval_begin + interval_size, num_nonzeros);  // end of warps's work

    const IndexType idx = 16 * (threadIdx.x/32 + 1) + threadIdx.x;                               // thread's index into padded rows array

    rows[idx - 16] = -1;                                                                         // fill padding with invalid row index

    if(interval_begin >= interval_end)                                                           // warp has no work to do 
        return;

    if (thread_lane == 31)
    {
        // initialize the carry in values
        rows[idx] = I[interval_begin]; 
	vals[threadIdx.x] = ValueType(0);
    }
  
    for(IndexType n = interval_begin + thread_lane; n < interval_end; n += WARP_SIZE)
    {
        IndexType row = I[n];                                         // row index (i)
        ValueType val = V[n] * fetch_x<UseCache>(J[n], x);            // A(i,j) * x(j)
        
        if (thread_lane == 0)
        {
            if(row == rows[idx + 31])
                val += vals[threadIdx.x + 31];                        // row continues
            else
                y[rows[idx + 31]] += vals[threadIdx.x + 31];  // row terminated
        }
        
        rows[idx]         = row;
        vals[threadIdx.x] = val;

        if(row == rows[idx -  1]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  1]; } 
        if(row == rows[idx -  2]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  2]; }
        if(row == rows[idx -  4]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  4]; }
        if(row == rows[idx -  8]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  8]; }
        if(row == rows[idx - 16]) { vals[threadIdx.x] = val = val + vals[threadIdx.x - 16]; }

        if(thread_lane < 31 && row != rows[idx + 1])
            y[row] += vals[threadIdx.x];                                            // row terminated
    }

    if(thread_lane == 31)
    {
        // write the carry out values
        temp_rows[warp_id] = rows[idx];
        temp_vals[warp_id] = vals[threadIdx.x];
    }
}


// The second level of the segmented reduction operation
template <typename IndexType, typename ValueType, unsigned int BLOCK_SIZE>
__launch_bounds__(BLOCK_SIZE,1)
__global__ void
spmv_coo_reduce_update_kernel(const IndexType num_warps,
                              const IndexType * temp_rows,
                              const ValueType * temp_vals,
                                    ValueType * y)
{
    __shared__ IndexType rows[BLOCK_SIZE + 1];    
    __shared__ ValueType vals[BLOCK_SIZE + 1];    

    const IndexType end = num_warps - (num_warps & (BLOCK_SIZE - 1));

    if (threadIdx.x == 0)
    {
        rows[BLOCK_SIZE] = (IndexType) -1;
        vals[BLOCK_SIZE] = (ValueType)  0;
    }
    
    __syncthreads();

    IndexType i = threadIdx.x;

    while (i < end)
    {
        // do full blocks
        rows[threadIdx.x] = temp_rows[i];
        vals[threadIdx.x] = temp_vals[i];

        __syncthreads();

        segreduce_block(rows, vals);

        if (rows[threadIdx.x] != rows[threadIdx.x + 1])
            y[rows[threadIdx.x]] += vals[threadIdx.x];

        __syncthreads();

        i += BLOCK_SIZE; 
    }

    if (end < num_warps){
        if (i < num_warps){
            rows[threadIdx.x] = temp_rows[i];
            vals[threadIdx.x] = temp_vals[i];
        } else {
            rows[threadIdx.x] = (IndexType) -1;
            vals[threadIdx.x] = (ValueType)  0;
        }

        __syncthreads();
   
        segreduce_block(rows, vals);

        if (i < num_warps)
            if (rows[threadIdx.x] != rows[threadIdx.x + 1])
                y[rows[threadIdx.x]] += vals[threadIdx.x];
    }
}


template <bool UseCache,
          bool InitializeY,
          typename Matrix,
          typename ValueType>
void __spmv_coo_flat(const Matrix&    A, 
                     const ValueType* x, 
                           ValueType* y)
{
    typedef typename Matrix::index_type IndexType;

    const IndexType * I = thrust::raw_pointer_cast(&A.row_indices[0]);
    const IndexType * J = thrust::raw_pointer_cast(&A.column_indices[0]);
    const ValueType * V = thrust::raw_pointer_cast(&A.values[0]);

    if (InitializeY)
        thrust::fill(thrust::device_pointer_cast(y), thrust::device_pointer_cast(y) + A.num_rows, ValueType(0));

    if(A.num_entries == 0)
    {
        // empty matrix
        return;
    }
    else if (A.num_entries < static_cast<size_t>(WARP_SIZE))
    {
        // small matrix
        spmv_coo_serial_kernel<IndexType,ValueType> <<<1,1>>>
            (A.num_entries, I, J, V, x, y);
        return;
    }

    const unsigned int BLOCK_SIZE = 256;
    const unsigned int MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_coo_flat_kernel<IndexType, ValueType, BLOCK_SIZE, UseCache>, BLOCK_SIZE, (size_t) 0);
    const unsigned int WARPS_PER_BLOCK = BLOCK_SIZE / WARP_SIZE;

    const unsigned int num_units  = A.num_entries / WARP_SIZE; 
    const unsigned int num_warps  = std::min(num_units, WARPS_PER_BLOCK * MAX_BLOCKS);
    const unsigned int num_blocks = DIVIDE_INTO(num_warps, WARPS_PER_BLOCK);
    const unsigned int num_iters  = DIVIDE_INTO(num_units, num_warps);
    
    const unsigned int interval_size = WARP_SIZE * num_iters;

    const IndexType tail = num_units * WARP_SIZE; // do the last few nonzeros separately (fewer than WARP_SIZE elements)

    const unsigned int active_warps = (interval_size == 0) ? 0 : DIVIDE_INTO(tail, interval_size);

    if (UseCache)
        bind_x(x);

    cusp::array1d<IndexType,cusp::device_memory> temp_rows(active_warps);
    cusp::array1d<ValueType,cusp::device_memory> temp_vals(active_warps);

    spmv_coo_flat_kernel<IndexType, ValueType, BLOCK_SIZE, UseCache> <<<num_blocks, BLOCK_SIZE>>>
        (tail, interval_size, I, J, V, x, y,
         thrust::raw_pointer_cast(&temp_rows[0]), thrust::raw_pointer_cast(&temp_vals[0]));

    spmv_coo_reduce_update_kernel<IndexType, ValueType, BLOCK_SIZE> <<<1, BLOCK_SIZE>>>
        (active_warps, thrust::raw_pointer_cast(&temp_rows[0]), thrust::raw_pointer_cast(&temp_vals[0]), y);
    
    spmv_coo_serial_kernel<IndexType,ValueType> <<<1,1>>>
        (A.num_entries - tail, I + tail, J + tail, V + tail, x, y);

    if (UseCache)
        unbind_x(x);
}

template <typename Matrix,
          typename ValueType>
void spmv_coo_flat(const Matrix& A,
                   const ValueType * x, 
                         ValueType * y)
{ 
    __spmv_coo_flat<false, true>(A, x, y);
}


template <typename Matrix,
          typename ValueType>
void spmv_coo_flat_tex(const Matrix& A,
                       const ValueType * x, 
                             ValueType * y)
{ 
    __spmv_coo_flat<true, true>(A, x, y);
}


} // end namespace device
} // end namespace detail
} // end namespace cusp