1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/coo_matrix.h>
#include <cusp/detail/device/arch.h>
#include <cusp/detail/device/common.h>
#include <cusp/detail/device/utils.h>
#include <cusp/detail/device/texture.h>
#include <cusp/detail/device/spmv/coo_serial.h>
#include <cusp/detail/device/spmv/coo_flat.h>
// Note: Unlike the other kernels this kernel implements y += A*x
namespace cusp
{
namespace detail
{
namespace device
{
template<unsigned int CTA_SIZE,
typename KeyIterator,
typename ValueIterator>
__device__
void scan_by_key(KeyIterator keys, ValueIterator vals)
{
typedef typename thrust::iterator_value<KeyIterator>::type KeyType;
typedef typename thrust::iterator_value<ValueIterator>::type ValueType;
KeyType key = keys[threadIdx.x];
ValueType val = vals[threadIdx.x];
if (CTA_SIZE > 1) { if(threadIdx.x >= 1 && key == keys[threadIdx.x - 1]) { val += vals[threadIdx.x - 1]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 2) { if(threadIdx.x >= 2 && key == keys[threadIdx.x - 2]) { val += vals[threadIdx.x - 2]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 4) { if(threadIdx.x >= 4 && key == keys[threadIdx.x - 4]) { val += vals[threadIdx.x - 4]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 8) { if(threadIdx.x >= 8 && key == keys[threadIdx.x - 8]) { val += vals[threadIdx.x - 8]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 16) { if(threadIdx.x >= 16 && key == keys[threadIdx.x - 16]) { val += vals[threadIdx.x - 16]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 32) { if(threadIdx.x >= 32 && key == keys[threadIdx.x - 32]) { val += vals[threadIdx.x - 32]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 64) { if(threadIdx.x >= 64 && key == keys[threadIdx.x - 64]) { val += vals[threadIdx.x - 64]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 128) { if(threadIdx.x >= 128 && key == keys[threadIdx.x - 128]) { val += vals[threadIdx.x - 128]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 256) { if(threadIdx.x >= 256 && key == keys[threadIdx.x - 256]) { val += vals[threadIdx.x - 256]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
if (CTA_SIZE > 512) { if(threadIdx.x >= 512 && key == keys[threadIdx.x - 512]) { val += vals[threadIdx.x - 512]; } __syncthreads(); vals[threadIdx.x] = val; __syncthreads(); }
}
template <unsigned int CTA_SIZE,
unsigned int K,
bool UseCache,
typename IndexType,
typename ValueType>
__global__ void
spmv_coo_flat_k_kernel(const IndexType N,
const IndexType interval_size,
const IndexType * I,
const IndexType * J,
const ValueType * V,
const ValueType * x,
ValueType * y,
IndexType * temp_rows,
ValueType * temp_vals)
{
__shared__ IndexType rows[K + 1][CTA_SIZE + 1];
__shared__ ValueType vals[K + 1][CTA_SIZE + 1];
__shared__ IndexType last_row;
__shared__ ValueType last_val;
const unsigned int interval_begin = interval_size * blockIdx.x;
const unsigned int interval_end = min(interval_begin + interval_size, N);
const unsigned int unit_size = K * CTA_SIZE;
unsigned int base = interval_begin;
if (threadIdx.x == 0)
{
// initialize the carry in values
last_row = I[interval_begin];
last_val = 0;
}
// process full units
for(; base + unit_size <= interval_end; base += unit_size)
{
// read data
for(unsigned int k = 0; k < K; k++)
{
const unsigned int offset = k*CTA_SIZE + threadIdx.x;
const unsigned int n = base + offset;
rows[offset % K][offset / K] = I[n]; // i
vals[offset % K][offset / K] = V[n] * fetch_x<UseCache>(J[n], x); // A(i,j) * x(j)
}
__syncthreads();
// carry in
if (threadIdx.x == 0)
{
if (rows[0][0] == last_row)
vals[0][0] += last_val;
else
y[last_row] = last_val;
}
unsigned int terminated_rows = 0;
// segmented scan of K values per thread
for(unsigned int k = 1; k < K; k++)
{
if(rows[k-1][threadIdx.x] == rows[k][threadIdx.x])
vals[k][threadIdx.x] += vals[k-1][threadIdx.x];
else
terminated_rows++;
}
rows[K][threadIdx.x] = rows[K-1][threadIdx.x];
vals[K][threadIdx.x] = vals[K-1][threadIdx.x];
__syncthreads();
// scan horizontally across block
scan_by_key<CTA_SIZE>(&rows[K][0], &vals[K][0]);
IndexType prev_row = (threadIdx.x == 0) ? rows[0][0] : rows[K][threadIdx.x - 1];
ValueType prev_val = (threadIdx.x == 0) ? 0 : vals[K][threadIdx.x - 1];
if (prev_row != rows[0][threadIdx.x])
terminated_rows++;
// update local values
for(unsigned int k = 0; k < K; k++)
{
if(rows[k][threadIdx.x] == prev_row)
vals[k][threadIdx.x] += prev_val;
// XXX could early out here
//else
// break;
}
// TODO stream compact terminated rows
//
//y[rows[K][threadIdx.x]] = vals[K][threadIdx.x];
if (prev_row != rows[0][threadIdx.x])
y[prev_row] = prev_val;
// write out terminated rows
for(unsigned int k = 0; k < K - 1; k++)
{
if(rows[k][threadIdx.x] != rows[k + 1][threadIdx.x])
y[rows[k][threadIdx.x]] = vals[k][threadIdx.x];
}
if (threadIdx.x == 0)
{
last_row = rows[K][CTA_SIZE-1];
last_val = vals[K][CTA_SIZE-1];
}
__syncthreads();
}
// process partially full unit at end of input (if necessary)
if (base < interval_end)
{
if(threadIdx.x == 0)
{
IndexType prev_row = last_row;
ValueType prev_val = last_val;
for(IndexType n = base; n < interval_end; n++)
{
IndexType row = I[n];
ValueType val = V[n] * fetch_x<UseCache>(J[n], x); // A(i,j) * x(j)
if(row == prev_row)
val += prev_val;
else
y[prev_row] = prev_val;
prev_row = row;
prev_val = val;
}
last_row = prev_row;
last_val = prev_val;
}
}
__syncthreads();
if(threadIdx.x == 0)
{
// write the carry out values
temp_rows[blockIdx.x] = last_row;
temp_vals[blockIdx.x] = last_val;
}
}
template <typename IndexType, typename ValueType, bool UseCache, bool InitializeY>
void __spmv_coo_flat_k(const coo_matrix<IndexType,ValueType,cusp::device_memory>& coo,
const ValueType * d_x,
ValueType * d_y)
{
const IndexType * I = thrust::raw_pointer_cast(&coo.row_indices[0]);
const IndexType * J = thrust::raw_pointer_cast(&coo.column_indices[0]);
const ValueType * V = thrust::raw_pointer_cast(&coo.values[0]);
if (InitializeY)
thrust::fill(thrust::device_pointer_cast(d_y), thrust::device_pointer_cast(d_y) + coo.num_rows, ValueType(0));
if(coo.num_entries == 0)
{
// empty matrix
return;
}
else if (coo.num_entries < WARP_SIZE)
{
// small matrix
spmv_coo_serial_kernel<IndexType,ValueType> <<<1,1>>>
(coo.num_entries, I, J, V, d_x, d_y);
return;
}
//TODO Determine optimal CTA_SIZE and max_blocks
const unsigned int CTA_SIZE = 128;
const unsigned int K = 4;
const unsigned int N = coo.num_entries;
const unsigned int unit_size = CTA_SIZE * K;
const unsigned int num_units = thrust::detail::util::divide_ri(N, unit_size);
const unsigned int max_blocks = 120; //thrust::experimental::arch::max_active_blocks(scan_intervals<CTA_SIZE,K,InputIterator,OutputIterator,BinaryFunction>, CTA_SIZE, 0);
const unsigned int num_blocks = std::min(max_blocks, num_units);
const unsigned int num_iters = thrust::detail::util::divide_ri(num_units, num_blocks);
const unsigned int interval_size = unit_size * num_iters;
if (UseCache)
bind_x(d_x);
cusp::array1d<IndexType,cusp::device_memory> temp_rows(num_blocks);
cusp::array1d<ValueType,cusp::device_memory> temp_vals(num_blocks);
spmv_coo_flat_k_kernel<CTA_SIZE,K,UseCache,IndexType,ValueType> <<<num_blocks,CTA_SIZE>>>
(N, interval_size, I, J, V, d_x, d_y,
thrust::raw_pointer_cast(&temp_rows[0]), thrust::raw_pointer_cast(&temp_vals[0]));
// spmv_coo_serial_kernel<IndexType,ValueType> <<<1,1>>>
// (coo.num_entries - tail, I + tail, J + tail, V + tail, d_x, d_y);
spmv_coo_reduce_update_kernel<IndexType, ValueType, 512> <<<1, 512>>>
(num_blocks, thrust::raw_pointer_cast(&temp_rows[0]), thrust::raw_pointer_cast(&temp_vals[0]), d_y);
if (UseCache)
unbind_x(d_x);
}
template <typename IndexType, typename ValueType>
void spmv_coo_flat_k(const coo_matrix<IndexType,ValueType,cusp::device_memory>& coo,
const ValueType * d_x,
ValueType * d_y)
{
__spmv_coo_flat_k<IndexType, ValueType, false, true>(coo, d_x, d_y);
}
template <typename IndexType, typename ValueType>
void spmv_coo_flat_k_tex(const coo_matrix<IndexType,ValueType,cusp::device_memory>& coo,
const ValueType * d_x,
ValueType * d_y)
{
__spmv_coo_flat_k<IndexType, ValueType, true, true>(coo, d_x, d_y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp
|