1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/detail/device/arch.h>
#include <cusp/detail/device/utils.h>
#include <cusp/detail/device/texture.h>
#include <thrust/device_ptr.h>
namespace cusp
{
namespace detail
{
namespace device
{
////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a scalar model (one thread per row)
///////////////////////////////////////////////////////////////////////
//
// spmv_csr_scalar_device
// Straightforward translation of standard CSR SpMV to CUDA
// where each thread computes y[i] = A[i,:] * x
// (the dot product of the i-th row of A with the x vector)
//
// spmv_csr_scalar_tex_device
// Same as spmv_csr_scalar_device, except x is accessed via texture cache.
//
template <bool UseCache,
typename IndexType,
typename ValueType>
__global__ void
spmv_csr_scalar_kernel(const IndexType num_rows,
const IndexType * Ap,
const IndexType * Aj,
const ValueType * Ax,
const ValueType * x,
ValueType * y)
{
const IndexType thread_id = blockDim.x * blockIdx.x + threadIdx.x;
const IndexType grid_size = gridDim.x * blockDim.x;
for(IndexType row = thread_id; row < num_rows; row += grid_size)
{
const IndexType row_start = Ap[row];
const IndexType row_end = Ap[row+1];
ValueType sum = 0;
for (IndexType jj = row_start; jj < row_end; jj++)
sum += Ax[jj] * fetch_x<UseCache>(Aj[jj], x);
y[row] = sum;
}
}
template <bool UseCache,
typename Matrix,
typename ValueType>
void __spmv_csr_scalar(const Matrix& A,
const ValueType* x,
ValueType* y)
{
typedef typename Matrix::index_type IndexType;
const size_t BLOCK_SIZE = 256;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_scalar_kernel<UseCache, IndexType, ValueType>, BLOCK_SIZE, (size_t) 0);
const size_t NUM_BLOCKS = std::min(MAX_BLOCKS, DIVIDE_INTO(A.num_rows, BLOCK_SIZE));
if (UseCache)
bind_x(x);
spmv_csr_scalar_kernel<UseCache,IndexType,ValueType> <<<NUM_BLOCKS, BLOCK_SIZE>>>
(A.num_rows,
thrust::raw_pointer_cast(&A.row_offsets[0]),
thrust::raw_pointer_cast(&A.column_indices[0]),
thrust::raw_pointer_cast(&A.values[0]),
x, y);
if (UseCache)
unbind_x(x);
}
template <typename Matrix,
typename ValueType>
void spmv_csr_scalar(const Matrix& A,
const ValueType* x,
ValueType* y)
{
__spmv_csr_scalar<false>(A, x, y);
}
template <typename Matrix,
typename ValueType>
void spmv_csr_scalar_tex(const Matrix& A,
const ValueType* x,
ValueType* y)
{
__spmv_csr_scalar<true>(A, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp
|