1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/detail/device/arch.h>
#include <cusp/detail/device/common.h>
#include <cusp/detail/device/utils.h>
#include <cusp/detail/device/texture.h>
#include <thrust/device_ptr.h>
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <typename IndexType, typename ValueType, unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
spmv_csr_vector_kernel(const IndexType num_rows,
const IndexType * Ap,
const IndexType * Aj,
const ValueType * Ax,
const ValueType * x,
ValueType * y)
{
__shared__ volatile ValueType sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile IndexType ptrs[VECTORS_PER_BLOCK][2];
const IndexType THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const IndexType thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const IndexType thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const IndexType vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const IndexType vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const IndexType num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(IndexType row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = Ap[row + thread_lane];
const IndexType row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const IndexType row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
ValueType sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
IndexType jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end)
sum += Ax[jj] * fetch_x<UseCache>(Aj[jj], x);
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR)
sum += Ax[jj] * fetch_x<UseCache>(Aj[jj], x);
}
else
{
// accumulate local sums
for(IndexType jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR)
sum += Ax[jj] * fetch_x<UseCache>(Aj[jj], x);
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR, typename Matrix, typename ValueType>
void __spmv_csr_vector(const Matrix& A,
const ValueType* x,
ValueType* y)
{
typedef typename Matrix::index_type IndexType;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<IndexType, ValueType, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(A.num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<IndexType, ValueType, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(A.num_rows,
thrust::raw_pointer_cast(&A.row_offsets[0]),
thrust::raw_pointer_cast(&A.column_indices[0]),
thrust::raw_pointer_cast(&A.values[0]),
x, y);
if (UseCache)
unbind_x(x);
}
template <typename Matrix,
typename ValueType>
void spmv_csr_vector(const Matrix& A,
const ValueType* x,
ValueType* y)
{
typedef typename Matrix::index_type IndexType;
const IndexType nnz_per_row = A.num_entries / A.num_rows;
if (nnz_per_row <= 2) { __spmv_csr_vector<false, 2>(A, x, y); return; }
if (nnz_per_row <= 4) { __spmv_csr_vector<false, 4>(A, x, y); return; }
if (nnz_per_row <= 8) { __spmv_csr_vector<false, 8>(A, x, y); return; }
if (nnz_per_row <= 16) { __spmv_csr_vector<false,16>(A, x, y); return; }
__spmv_csr_vector<false,32>(A, x, y);
}
template <typename Matrix,
typename ValueType>
void spmv_csr_vector_tex(const Matrix& A,
const ValueType* x,
ValueType* y)
{
typedef typename Matrix::index_type IndexType;
const IndexType nnz_per_row = A.num_entries / A.num_rows;
if (nnz_per_row <= 2) { __spmv_csr_vector<true, 2>(A, x, y); return; }
if (nnz_per_row <= 4) { __spmv_csr_vector<true, 4>(A, x, y); return; }
if (nnz_per_row <= 8) { __spmv_csr_vector<true, 8>(A, x, y); return; }
if (nnz_per_row <= 16) { __spmv_csr_vector<true,16>(A, x, y); return; }
__spmv_csr_vector<true,32>(A, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp
|