1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Modifications to this file:
* Copyright (c) 2014-2015, The University of Queensland
* Licensed under the Apache License, Version 2.0.
*
*/
#include <cusp/copy.h>
#include <cusp/format.h>
#include <cusp/array1d.h>
#include <thrust/fill.h>
#include <thrust/extrema.h>
#include <thrust/binary_search.h>
#include <thrust/transform.h>
#include <thrust/gather.h>
#include <thrust/scatter.h>
#include <thrust/sequence.h>
#include <thrust/scan.h>
#include <thrust/sort.h>
namespace cusp
{
namespace detail
{
template <typename IndexType>
struct empty_row_functor
{
typedef bool result_type;
template <typename Tuple>
__host__ __device__
bool operator()(const Tuple& t) const
{
const IndexType a = thrust::get<0>(t);
const IndexType b = thrust::get<1>(t);
return a != b;
}
};
template <typename OffsetArray, typename IndexArray>
void offsets_to_indices(const OffsetArray& offsets, IndexArray& indices)
{
CUSP_PROFILE_SCOPED();
typedef typename OffsetArray::value_type OffsetType;
// convert compressed row offsets into uncompressed row indices
thrust::fill(indices.begin(), indices.end(), OffsetType(0));
thrust::scatter_if( thrust::counting_iterator<OffsetType>(0),
thrust::counting_iterator<OffsetType>(offsets.size()-1),
offsets.begin(),
thrust::make_transform_iterator(
thrust::make_zip_iterator( thrust::make_tuple( offsets.begin(), offsets.begin()+1 ) ),
empty_row_functor<OffsetType>()),
indices.begin());
thrust::inclusive_scan(indices.begin(), indices.end(), indices.begin(), thrust::maximum<OffsetType>());
}
template <typename IndexArray, typename OffsetArray>
void indices_to_offsets(const IndexArray& indices, OffsetArray& offsets)
{
CUSP_PROFILE_SCOPED();
typedef typename OffsetArray::value_type OffsetType;
// convert uncompressed row indices into compressed row offsets
thrust::lower_bound(indices.begin(),
indices.end(),
thrust::counting_iterator<OffsetType>(0),
thrust::counting_iterator<OffsetType>(offsets.size()),
offsets.begin());
}
template<typename IndexType>
struct row_operator : public std::unary_function<size_t,IndexType>
{
size_t pitch;
row_operator(size_t pitch)
: pitch(pitch) {}
__host__ __device__
IndexType operator()(const size_t & linear_index) const
{
return linear_index % pitch;
}
};
template <typename IndexType>
struct tuple_equal_to : public thrust::unary_function<thrust::tuple<IndexType,IndexType>,bool>
{
__host__ __device__
bool operator()(const thrust::tuple<IndexType,IndexType>& t) const
{
return thrust::get<0>(t) == thrust::get<1>(t);
}
};
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output, cusp::cds_format)
{
typedef typename Matrix::index_type IndexType;
typedef typename Array::value_type ValueType;
typedef typename Matrix::values_array_type::values_array_type::const_iterator InIterator;
typedef typename Array::iterator OutIterator;
typedef typename cusp::detail::strided_range<InIterator> InputStride;
typedef typename cusp::detail::strided_range<OutIterator> OutputStride;
// copy diagonal_offsets to host (sometimes unnecessary)
cusp::array1d<IndexType,cusp::host_memory> diagonal_offsets(A.diagonal_offsets);
for (size_t i = 0; i < diagonal_offsets.size(); i++)
{
if (diagonal_offsets[i] == 0)
{
if (A.block_size == 1) {
// diagonal found, copy to output and return
thrust::copy(A.values.values.begin() + A.values.pitch * i,
A.values.values.begin() + A.values.pitch * i + output.size(),
output.begin());
} else {
// diagonal block found, extract main diagonal and return
// TODO: There must be a nicer way of doing this...
for (IndexType j=0; j < A.block_size; j++) {
InIterator first = A.values.values.begin() + A.values.pitch * (i * A.block_size + j) + j;
InputStride range(first, first+output.size(), A.block_size);
OutputStride out(output.begin()+j, output.end(), A.block_size);
thrust::copy(range.begin(), range.end(), out.begin());
}
}
return;
}
}
// no diagonal found
thrust::fill(output.begin(), output.end(), ValueType(0));
}
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output, cusp::coo_format)
{
CUSP_PROFILE_SCOPED();
typedef typename Matrix::index_type IndexType;
typedef typename Array::value_type ValueType;
// initialize output to zero
thrust::fill(output.begin(), output.end(), ValueType(0));
// scatter the diagonal values to output
thrust::scatter_if(A.values.begin(), A.values.end(),
A.row_indices.begin(),
thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple(A.row_indices.begin(), A.column_indices.begin())), tuple_equal_to<IndexType>()),
output.begin());
}
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output, cusp::csr_format)
{
typedef typename Matrix::index_type IndexType;
typedef typename Array::value_type ValueType;
typedef typename Array::memory_space MemorySpace;
// first expand the compressed row offsets into row indices
cusp::array1d<IndexType,MemorySpace> row_indices(A.num_entries);
offsets_to_indices(A.row_offsets, row_indices);
// initialize output to zero
thrust::fill(output.begin(), output.end(), ValueType(0));
// scatter the diagonal values to output
thrust::scatter_if(A.values.begin(), A.values.end(),
row_indices.begin(),
thrust::make_transform_iterator(thrust::make_zip_iterator(thrust::make_tuple(row_indices.begin(), A.column_indices.begin())), tuple_equal_to<IndexType>()),
output.begin());
}
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output, cusp::dia_format)
{
typedef typename Matrix::index_type IndexType;
typedef typename Array::value_type ValueType;
// copy diagonal_offsets to host (sometimes unnecessary)
cusp::array1d<IndexType,cusp::host_memory> diagonal_offsets(A.diagonal_offsets);
for(size_t i = 0; i < diagonal_offsets.size(); i++)
{
if(diagonal_offsets[i] == 0)
{
// diagonal found, copy to output and return
thrust::copy(A.values.values.begin() + A.values.pitch * i,
A.values.values.begin() + A.values.pitch * i + output.size(),
output.begin());
return;
}
}
// no diagonal found
thrust::fill(output.begin(), output.end(), ValueType(0));
}
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output, cusp::ell_format)
{
typedef typename Matrix::index_type IndexType;
typedef typename Array::value_type ValueType;
// initialize output to zero
thrust::fill(output.begin(), output.end(), ValueType(0));
thrust::scatter_if
(A.values.values.begin(), A.values.values.end(),
thrust::make_transform_iterator(thrust::counting_iterator<size_t>(0), row_operator<IndexType>(A.column_indices.pitch)),
thrust::make_zip_iterator(thrust::make_tuple
(thrust::make_transform_iterator(thrust::counting_iterator<size_t>(0), row_operator<IndexType>(A.column_indices.pitch)),
A.column_indices.values.begin())),
output.begin(),
tuple_equal_to<IndexType>());
// TODO ignore padded values in column_indices
}
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output, cusp::hyb_format)
{
typedef typename Matrix::index_type IndexType;
//typedef typename Array::value_type ValueType;
// extract COO diagonal
cusp::detail::extract_diagonal(A.coo, output);
// extract ELL diagonal
thrust::scatter_if
(A.ell.values.values.begin(), A.ell.values.values.end(),
thrust::make_transform_iterator(thrust::counting_iterator<size_t>(0), row_operator<IndexType>(A.ell.column_indices.pitch)),
thrust::make_zip_iterator(thrust::make_tuple
(thrust::make_transform_iterator(thrust::counting_iterator<size_t>(0), row_operator<IndexType>(A.ell.column_indices.pitch)),
A.ell.column_indices.values.begin())),
output.begin(),
tuple_equal_to<IndexType>());
// TODO ignore padded values in column_indices
}
template <typename Matrix, typename Array>
void extract_diagonal(const Matrix& A, Array& output)
{
CUSP_PROFILE_SCOPED();
output.resize(thrust::min(A.num_rows, A.num_cols));
// dispatch on matrix format
extract_diagonal(A, output, typename Matrix::format());
}
template <typename Array1, typename Array2, typename Array3>
void sort_by_row(Array1& rows, Array2& columns, Array3& values)
{
CUSP_PROFILE_SCOPED();
typedef typename Array1::value_type IndexType;
typedef typename Array3::value_type ValueType;
typedef typename Array1::memory_space MemorySpace;
size_t N = rows.size();
cusp::array1d<IndexType,MemorySpace> permutation(N);
thrust::sequence(permutation.begin(), permutation.end());
// compute permutation that sorts the rows
thrust::sort_by_key(rows.begin(), rows.end(), permutation.begin());
// copy columns and values to temporary buffers
cusp::array1d<IndexType,MemorySpace> temp1(columns);
cusp::array1d<ValueType,MemorySpace> temp2(values);
// use permutation to reorder the values
thrust::gather(permutation.begin(), permutation.end(),
thrust::make_zip_iterator(thrust::make_tuple(temp1.begin(), temp2.begin())),
thrust::make_zip_iterator(thrust::make_tuple(columns.begin(), values.begin())));
}
template <typename Array1, typename Array2, typename Array3>
void sort_by_row_and_column(Array1& rows, Array2& columns, Array3& values)
{
CUSP_PROFILE_SCOPED();
typedef typename Array1::value_type IndexType;
typedef typename Array3::value_type ValueType;
typedef typename Array1::memory_space MemorySpace;
size_t N = rows.size();
cusp::array1d<IndexType,MemorySpace> permutation(N);
thrust::sequence(permutation.begin(), permutation.end());
// compute permutation and sort by (I,J)
{
cusp::array1d<IndexType,MemorySpace> temp(columns);
thrust::stable_sort_by_key(temp.begin(), temp.end(), permutation.begin());
cusp::copy(rows, temp);
thrust::gather(permutation.begin(), permutation.end(), temp.begin(), rows.begin());
thrust::stable_sort_by_key(rows.begin(), rows.end(), permutation.begin());
cusp::copy(columns, temp);
thrust::gather(permutation.begin(), permutation.end(), temp.begin(), columns.begin());
}
// use permutation to reorder the values
{
cusp::array1d<ValueType,MemorySpace> temp(values);
thrust::gather(permutation.begin(), permutation.end(), temp.begin(), values.begin());
}
}
} // end namespace detail
} // end namespace cusp
|