File: transposed_spmv.h

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (192 lines) | stat: -rw-r--r-- 6,612 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 *  Copyright 2014-2015 The University of Queensland
 *  http://www.uq.edu.au
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#pragma once

#include <thrust/functional.h>
#include <cusp/detail/functional.h>

#ifndef DIA_CHUNKSIZE
#define DIA_CHUNKSIZE 1024
#endif

namespace cusp
{
namespace detail
{
namespace host
{

/////////////////////////
// DIA transposed SpMV //
/////////////////////////
template <typename Matrix,
          typename Vector1,
          typename Vector2,
          typename UnaryFunction,
          typename BinaryFunction1,
          typename BinaryFunction2>
void transposed_spmv_dia(const Matrix&  A,
                         const Vector1& x,
                               Vector2& y,
                         UnaryFunction   initialize,
                         BinaryFunction1 combine,
                         BinaryFunction2 reduce)
{
    typedef typename Matrix::index_type  IndexType;
    //typedef typename Vector2::value_type ValueType;

    const size_t num_diagonals = A.values.num_cols;

#pragma omp parallel for
    for (size_t ch = 0; ch < A.num_cols; ch += DIA_CHUNKSIZE) {
        // initialize chunk
        for (size_t row = ch; row < std::min(ch+DIA_CHUNKSIZE,A.num_cols); row++)
        {
            y[row] = initialize(y[row]);
        }
        // for each diagonal
        for (size_t d = 0; d < num_diagonals; d++)
        {
            for (IndexType row=ch; row<std::min(ch+DIA_CHUNKSIZE,A.num_cols); row++)
            {
                const IndexType col = row - A.diagonal_offsets[d];
                if (col >= 0 && col < A.num_rows)
                {
                    y[row] = reduce(y[row], combine(A.values(col, d), x[col]));
                }
            }
        }
    }
}

template <typename Matrix,
          typename Vector1,
          typename Vector2>
void transposed_spmv_dia(const Matrix&  A,
                         const Vector1& x,
                               Vector2& y)
{
    typedef typename Vector2::value_type ValueType;

    transposed_spmv_dia(A, x, y,
             cusp::detail::zero_function<ValueType>(),
             thrust::multiplies<ValueType>(),
             thrust::plus<ValueType>());
}

template <typename Matrix,
          typename Vector1,
          typename Vector2,
          typename UnaryFunction,
          typename BinaryFunction1,
          typename BinaryFunction2>
void transposed_spmv_cds(const Matrix&  A,
                         const Vector1& x,
                               Vector2& y,
                         UnaryFunction   initialize,
                         BinaryFunction1 combine,
                         BinaryFunction2 reduce)
{
    typedef typename Matrix::index_type  IndexType;
    typedef typename Vector2::value_type ValueType;

    const IndexType num_diagonals = A.diagonal_offsets.size();
    const IndexType block_size = (IndexType)A.block_size;
    const IndexType num_cols = (IndexType)A.num_cols;
    // make chunksize a multiple of block_size
    const IndexType chunksize = block_size*(DIA_CHUNKSIZE/block_size);

    // optimisation for special case
    if (block_size == 2) {
#pragma omp parallel for
        for (IndexType ch = 0; ch < num_cols; ch += chunksize) {
            for (IndexType row = ch; row < std::min(ch+chunksize,num_cols); row+=2)
            {
                ValueType sum1 = initialize(y[row]);
                ValueType sum2 = initialize(y[row+1]);
                // for each diagonal block
                for (IndexType d = 0; d < num_diagonals; d++)
                {
                    const IndexType col = row - A.diagonal_offsets[d]*2;
                    if (col >= 0 && col < A.num_rows)
                    {
                        sum1 = reduce(sum1, combine(A.values(col,   2*d),  x[col]));
                        sum2 = reduce(sum2, combine(A.values(col,   2*d+1),x[col]));
                        sum1 = reduce(sum1, combine(A.values(col+1, 2*d),  x[col+1]));
                        sum2 = reduce(sum2, combine(A.values(col+1, 2*d+1),x[col+1]));
                    }
                }
                y[row] = sum1;
                y[row+1] = sum2;
            }
        }
    } else { // block_size!=2
#pragma omp parallel for
        for (IndexType ch = 0; ch < num_cols; ch += chunksize) {
            for (IndexType row = ch; row < std::min(ch+chunksize,num_cols); row++)
            {
                y[row] = initialize(y[row]);

                // for each diagonal block
                for (IndexType d = 0; d < num_diagonals; d++)
                {
                    const IndexType k = A.diagonal_offsets[d]*block_size;
                    const IndexType col = block_size*(row/block_size) - k;
                    if (col >= 0 && col <= A.num_rows-block_size)
                    {
                        // for each column in block
                        for (IndexType i = 0; i < block_size; i++)
                        {
                            const ValueType& Aij = A.values(col+i, d*block_size+row%block_size);
                            const ValueType& xj = x[col + i];
                            y[row] = reduce(y[row], combine(Aij, xj));
                        }
                    }
                } // diagonals
            } // rows
        } // chunks
    } // block_size
}

template <typename Matrix,
          typename Vector1,
          typename Vector2>
void transposed_spmv_cds(const Matrix&  A,
                         const Vector1& x,
                               Vector2& y)
{
    typedef typename Vector2::value_type ValueType;

    if (A.block_size == 1) {
        transposed_spmv_dia(A, x, y,
                 cusp::detail::zero_function<ValueType>(),
                 thrust::multiplies<ValueType>(),
                 thrust::plus<ValueType>());
    } else {
        transposed_spmv_cds(A, x, y,
                  cusp::detail::zero_function<ValueType>(),
                  thrust::multiplies<ValueType>(),
                  thrust::plus<ValueType>());
    }
}

} // end namespace host
} // end namespace detail
} // end namespace cusp