1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/array1d.h>
#include <cusp/array2d.h>
#include <cusp/linear_operator.h>
#include <cmath>
namespace cusp
{
namespace detail
{
template <typename IndexType, typename ValueType, typename MemorySpace, typename Orientation>
int lu_factor(cusp::array2d<ValueType,MemorySpace,Orientation>& A,
cusp::array1d<IndexType,MemorySpace>& pivot)
{
const int n = A.num_rows;
// For each row and column, k = 0, ..., n-1,
for (int k = 0; k < n; k++)
{
// find the pivot row
pivot[k] = k;
ValueType max = std::fabs(A(k,k));
for (int j = k + 1; j < n; j++)
{
if (max < std::fabs(A(j,k)))
{
max = std::fabs(A(j,k));
pivot[k] = j;
}
}
// and if the pivot row differs from the current row, then
// interchange the two rows.
if (pivot[k] != k)
for (int j = 0; j < n; j++)
std::swap(A(k,j), A(pivot[k],j));
// and if the matrix is singular, return error
if (A(k,k) == 0.0)
return -1;
// otherwise find the lower triangular matrix elements for column k.
for (int i = k + 1; i < n; i++)
A(i,k) /= A(k,k);
// update remaining matrix
for (int i = k + 1; i < n; i++)
for (int j = k + 1; j < n; j++)
A(i,j) -= A(i,k) * A(k,j);
}
return 0;
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename Orientation>
int lu_solve(const cusp::array2d<ValueType,MemorySpace,Orientation>& A,
const cusp::array1d<IndexType,MemorySpace>& pivot,
const cusp::array1d<ValueType,MemorySpace>& b,
cusp::array1d<ValueType,MemorySpace>& x)
{
const int n = A.num_rows;
// copy rhs to x
x = b;
// Solve the linear equation Lx = b for x, where L is a lower
// triangular matrix with an implied 1 along the diagonal.
for (int k = 0; k < n; k++)
{
if (pivot[k] != k)
std::swap(x[k],x[pivot[k]]);
for (int i = 0; i < k; i++)
x[k] -= A(k,i) * x[i];
}
// Solve the linear equation Ux = y, where y is the solution
// obtained above of Lx = b and U is an upper triangular matrix.
for (int k = n - 1; k >= 0; k--)
{
for (int i = k + 1; i < n; i++)
x[k] -= A(k,i) * x[i];
if (A(k,k) == 0)
return -1;
x[k] /= A(k,k);
}
return 0;
}
template <typename ValueType, typename MemorySpace>
class lu_solver : public cusp::linear_operator<ValueType,MemorySpace>
{
cusp::array2d<ValueType,cusp::host_memory> lu;
cusp::array1d<int,cusp::host_memory> pivot;
public:
lu_solver()
: linear_operator<ValueType,MemorySpace>()
{ }
lu_solver(const lu_solver<ValueType,MemorySpace>& M)
: lu(M.lu), pivot(M.pivot), linear_operator<ValueType,MemorySpace>(M.num_rows, M.num_cols, M.num_entries)
{ }
template <typename MatrixType>
lu_solver(const MatrixType& A)
: linear_operator<ValueType,MemorySpace>(A.num_rows, A.num_cols, A.num_entries)
{
CUSP_PROFILE_SCOPED();
// TODO assert A is square
lu = A;
pivot.resize(A.num_rows);
lu_factor(lu,pivot);
}
// TODO handle host and device
template <typename VectorType1, typename VectorType2>
void operator()(const VectorType1& x, VectorType2& y) const
{
CUSP_PROFILE_SCOPED();
lu_solve(lu, pivot, x, y);
}
};
} // end namespace detail
} // end namespace cusp
|