File: lu.h

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (155 lines) | stat: -rw-r--r-- 4,275 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*
 *  Copyright 2008-2009 NVIDIA Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

#pragma once

#include <cusp/array1d.h>
#include <cusp/array2d.h>
#include <cusp/linear_operator.h>

#include <cmath>

namespace cusp
{
namespace detail
{

template <typename IndexType, typename ValueType, typename MemorySpace, typename Orientation>
int lu_factor(cusp::array2d<ValueType,MemorySpace,Orientation>& A,
              cusp::array1d<IndexType,MemorySpace>& pivot)
{
    const int n = A.num_rows;

    // For each row and column, k = 0, ..., n-1,
    for (int k = 0; k < n; k++)
    {
        // find the pivot row
        pivot[k] = k;
        ValueType max = std::fabs(A(k,k));
        
        for (int j = k + 1; j < n; j++)
        {
            if (max < std::fabs(A(j,k)))
            {
                max = std::fabs(A(j,k));
                pivot[k] = j;
            }
        }

        // and if the pivot row differs from the current row, then
        // interchange the two rows.
        if (pivot[k] != k)
            for (int j = 0; j < n; j++)
                std::swap(A(k,j), A(pivot[k],j));

        // and if the matrix is singular, return error
        if (A(k,k) == 0.0)
            return -1;

        // otherwise find the lower triangular matrix elements for column k. 
        for (int i = k + 1; i < n; i++)
            A(i,k) /= A(k,k);

        // update remaining matrix
        for (int i = k + 1; i < n; i++)
            for (int j = k + 1; j < n; j++)
                A(i,j) -= A(i,k) * A(k,j);
    }

    return 0;
}



template <typename IndexType, typename ValueType, typename MemorySpace, typename Orientation>
int lu_solve(const cusp::array2d<ValueType,MemorySpace,Orientation>& A,
             const cusp::array1d<IndexType,MemorySpace>& pivot,
             const cusp::array1d<ValueType,MemorySpace>& b,
                   cusp::array1d<ValueType,MemorySpace>& x)
{
    const int n = A.num_rows;
   
    // copy rhs to x
    x = b;

    // Solve the linear equation Lx = b for x, where L is a lower
    // triangular matrix with an implied 1 along the diagonal.
    for (int k = 0; k < n; k++)
    {
        if (pivot[k] != k)
            std::swap(x[k],x[pivot[k]]);

        for (int i = 0; i < k; i++)
            x[k] -= A(k,i) * x[i];
    }

    // Solve the linear equation Ux = y, where y is the solution
    // obtained above of Lx = b and U is an upper triangular matrix.
    for (int k = n - 1; k >= 0; k--)
    {
        for (int i = k + 1; i < n; i++)
            x[k] -= A(k,i) * x[i];

        if (A(k,k) == 0)
            return -1;

        x[k] /= A(k,k);
    }

    return 0;
}


template <typename ValueType, typename MemorySpace>
class lu_solver : public cusp::linear_operator<ValueType,MemorySpace>
{
    cusp::array2d<ValueType,cusp::host_memory> lu;
    cusp::array1d<int,cusp::host_memory>       pivot;

    public:
    lu_solver()
        : linear_operator<ValueType,MemorySpace>()
    { }

    lu_solver(const lu_solver<ValueType,MemorySpace>& M)
        : lu(M.lu), pivot(M.pivot), linear_operator<ValueType,MemorySpace>(M.num_rows, M.num_cols, M.num_entries)
    { }

    template <typename MatrixType>
    lu_solver(const MatrixType& A) 
        : linear_operator<ValueType,MemorySpace>(A.num_rows, A.num_cols, A.num_entries)
    {
        CUSP_PROFILE_SCOPED();

        // TODO assert A is square
        lu = A;
        pivot.resize(A.num_rows);
        lu_factor(lu,pivot);
    }

    // TODO handle host and device
    template <typename VectorType1, typename VectorType2>
    void operator()(const VectorType1& x, VectorType2& y) const
    {
        CUSP_PROFILE_SCOPED();

        lu_solve(lu, pivot, x, y);
    }
};

} // end namespace detail
} // end namespace cusp