1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cusp/blas.h>
#include <cusp/multiply.h>
#include <cusp/monitor.h>
namespace cusp
{
template <typename MatrixType, typename SmootherType, typename SolverType>
template <typename MatrixType2, typename SmootherType2, typename SolverType2>
multilevel<MatrixType,SmootherType,SolverType>
::multilevel(const multilevel<MatrixType2,SmootherType2,SolverType2>& M)
: solver(M.solver)
{
for( size_t lvl = 0; lvl < M.levels.size(); lvl++ )
levels.push_back(M.levels[lvl]);
}
template <typename MatrixType, typename SmootherType, typename SolverType>
template <typename Array1, typename Array2>
void multilevel<MatrixType,SmootherType,SolverType>
::operator()(const Array1& b, Array2& x)
{
CUSP_PROFILE_SCOPED();
// perform 1 V-cycle
_solve(b, x, 0);
}
template <typename MatrixType, typename SmootherType, typename SolverType>
template <typename Array1, typename Array2>
void multilevel<MatrixType,SmootherType,SolverType>
::solve(const Array1& b, Array2& x)
{
CUSP_PROFILE_SCOPED();
cusp::default_monitor<ValueType> monitor(b);
solve(b, x, monitor);
}
template <typename MatrixType, typename SmootherType, typename SolverType>
template <typename Array1, typename Array2, typename Monitor>
void multilevel<MatrixType,SmootherType,SolverType>
::solve(const Array1& b, Array2& x, Monitor& monitor)
{
CUSP_PROFILE_SCOPED();
/* const MatrixType& A = levels[0].A; */
/* const size_t n = A.num_rows; */
const size_t n = levels[0].A.num_rows;
// use simple iteration
cusp::array1d<ValueType,MemorySpace> update(n);
cusp::array1d<ValueType,MemorySpace> residual(n);
// compute initial residual
/* cusp::multiply(A, x, residual); */
cusp::multiply(levels[0].A, x, residual);
cusp::blas::axpby(b, residual, residual, ValueType(1.0), ValueType(-1.0));
while(!monitor.finished(residual))
{
_solve(residual, update, 0);
// x += M * r
cusp::blas::axpy(update, x, ValueType(1.0));
// update residual
/* cusp::multiply(A, x, residual); */
cusp::multiply(levels[0].A, x, residual);
cusp::blas::axpby(b, residual, residual, ValueType(1.0), ValueType(-1.0));
++monitor;
}
}
template <typename MatrixType, typename SmootherType, typename SolverType>
template <typename Array1, typename Array2>
void multilevel<MatrixType,SmootherType,SolverType>
::_solve(const Array1& b, Array2& x, const size_t i)
{
CUSP_PROFILE_SCOPED();
if (i + 1 == levels.size())
{
// coarse grid solve
// TODO streamline
cusp::array1d<ValueType,cusp::host_memory> temp_b(b);
cusp::array1d<ValueType,cusp::host_memory> temp_x(x.size());
solver(temp_b, temp_x);
x = temp_x;
}
else
{
/* const MatrixType& A = levels[i].A; */
// presmooth
/* levels[i].smoother.presmooth(A, b, x); */
levels[i].smoother.presmooth(levels[i].A, b, x);
// compute residual <- b - A*x
/* cusp::multiply(A, x, levels[i].residual); */
cusp::multiply(levels[i].A, x, levels[i].residual);
cusp::blas::axpby(b, levels[i].residual, levels[i].residual, ValueType(1.0), ValueType(-1.0));
// restrict to coarse grid
cusp::multiply(levels[i].R, levels[i].residual, levels[i + 1].b);
// compute coarse grid solution
_solve(levels[i + 1].b, levels[i + 1].x, i + 1);
// apply coarse grid correction
cusp::multiply(levels[i].P, levels[i + 1].x, levels[i].residual);
cusp::blas::axpy(levels[i].residual, x, ValueType(1.0));
// postsmooth
/* levels[i].smoother.postsmooth(A, b, x); */
levels[i].smoother.postsmooth(levels[i].A, b, x);
}
}
template <typename MatrixType, typename SmootherType, typename SolverType>
void multilevel<MatrixType,SmootherType,SolverType>
::print( void )
{
size_t num_levels = levels.size();
std::cout << "\tNumber of Levels:\t" << num_levels << std::endl;
std::cout << "\tOperator Complexity:\t" << operator_complexity() << std::endl;
std::cout << "\tGrid Complexity:\t" << grid_complexity() << std::endl;
std::cout << "\tlevel\tunknowns\tnonzeros:\t" << std::endl;
double nnz = 0;
for(size_t index = 0; index < num_levels; index++)
nnz += levels[index].A.num_entries;
for(size_t index = 0; index < num_levels; index++)
{
double percent = levels[index].A.num_entries / nnz;
std::cout << "\t" << index << "\t" << levels[index].A.num_cols << "\t\t" \
<< levels[index].A.num_entries << " \t[" << 100*percent << "%]" \
<< std::endl;
}
}
template <typename MatrixType, typename SmootherType, typename SolverType>
double multilevel<MatrixType,SmootherType,SolverType>
::operator_complexity( void )
{
size_t nnz = 0;
for(size_t index = 0; index < levels.size(); index++)
nnz += levels[index].A.num_entries;
return (double) nnz / (double) levels[0].A.num_entries;
}
template <typename MatrixType, typename SmootherType, typename SolverType>
double multilevel<MatrixType,SmootherType,SolverType>
::grid_complexity( void )
{
size_t unknowns = 0;
for(size_t index = 0; index < levels.size(); index++)
unknowns += levels[index].A.num_rows;
return (double) unknowns / (double) levels[0].A.num_rows;
}
} // end namespace cusp
|