1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Modifications to this file:
* Copyright (c) 2014-2015, The University of Queensland
* Licensed under the Apache License, Version 2.0.
*
*/
/*! \file random.h
* \brief Random matrix generators
*/
#pragma once
#include <cusp/detail/config.h>
#include <cusp/cds_matrix.h>
#include <cusp/coo_matrix.h>
#include <thrust/unique.h>
#include <thrust/sort.h>
#include <stdlib.h> // XXX remove when we switch RNGs
namespace cusp
{
namespace gallery
{
/*! \addtogroup gallery Matrix Gallery
* \ingroup gallery
* \{
*/
// TODO use thrust RNGs, add seed parameter defaulting to num_rows ^ num_cols ^ num_samples
// TODO document
template <class MatrixType>
void random(size_t num_rows, size_t num_cols, size_t num_samples, MatrixType& output)
{
typedef typename MatrixType::index_type IndexType;
typedef typename MatrixType::value_type ValueType;
cusp::coo_matrix<IndexType,ValueType,cusp::host_memory> coo(num_rows, num_cols, num_samples);
srand(num_rows ^ num_cols ^ num_samples);
for(size_t n = 0; n < num_samples; n++)
{
coo.row_indices[n] = rand() % num_rows;
coo.column_indices[n] = rand() % num_cols;
coo.values[n] = ValueType(1);
}
// sort indices by (row,column)
coo.sort_by_row_and_column();
size_t num_entries = thrust::unique(thrust::make_zip_iterator(thrust::make_tuple(coo.row_indices.begin(), coo.column_indices.begin())),
thrust::make_zip_iterator(thrust::make_tuple(coo.row_indices.end(), coo.column_indices.end())))
- thrust::make_zip_iterator(thrust::make_tuple(coo.row_indices.begin(), coo.column_indices.begin()));
coo.resize(num_rows, num_cols, num_entries);
output = coo;
}
template <class MatrixType>
void randomblock(size_t num_rows, size_t num_diagonals, size_t block_size, MatrixType& output)
{
typedef typename MatrixType::index_type IndexType;
typedef typename MatrixType::value_type ValueType;
if (num_rows % block_size != 0)
throw cusp::invalid_input_exception("number of rows must be a multiple of block size!");
cusp::cds_matrix<IndexType,ValueType,cusp::host_memory> cds(num_rows, 0, num_diagonals, block_size);
srand(num_rows ^ num_diagonals);
// instead of entirely random, let's try and even out the number of
// subdiagonals and superdiagonals
const size_t max_offset = num_rows/32 - 1;
for(size_t n = 0; n < num_diagonals/2; n++)
{
const int offset = 1 + rand() % (max_offset-1);
cds.diagonal_offsets[2*n] = -offset;
cds.diagonal_offsets[2*n+1] = offset;
}
// for odd number of diagonals add main diagonal
if (num_diagonals%2 == 1)
cds.diagonal_offsets[num_diagonals-1]=0;
std::sort(cds.diagonal_offsets.begin(),cds.diagonal_offsets.end());
size_t num_entries = 0;
for(size_t n = 0; n < num_diagonals; n++)
{
const int offset = cds.diagonal_offsets[n];
const size_t num_blocks = num_rows/block_size-std::abs(offset);
num_entries += num_blocks*block_size*block_size;
const size_t first = std::max(0, -offset*(int)block_size);
for(size_t block = 0; block < num_blocks; block++)
{
for(size_t i = 0; i < block_size; i++)
{
for(size_t j = 0; j < block_size; j++)
{
cds.values(first+block*block_size+i, n*block_size+j) = ValueType(1);
}
}
}
}
cds.resize(num_rows, num_entries, block_size, num_diagonals);
output = cds;
}
/*! \}
*/
} // end namespace gallery
} // end namespace cusp
|