1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cusp/exception.h>
#include <cusp/array1d.h>
#include <cusp/graph/breadth_first_search.h>
#include <cusp/detail/device/arch.h>
#include <cusp/detail/device/common.h>
#include <cusp/detail/device/utils.h>
#include <cusp/detail/device/texture.h>
#include <thrust/scatter.h>
#include <thrust/iterator/constant_iterator.h>
namespace cusp
{
namespace graph
{
namespace detail
{
namespace device
{
#ifdef CUSP_GRAPH_EXPERIMENTAL
namespace detail
{
template <typename IndexType, typename ValueType, unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
bfs_edge_index_locator_kernel(const IndexType num_rows,
const IndexType * Ap,
const IndexType * Aj,
const ValueType * Ax,
const IndexType * bfs_tree,
IndexType * positions)
{
__shared__ volatile IndexType ptrs[VECTORS_PER_BLOCK][2];
__shared__ volatile IndexType perm_row[VECTORS_PER_BLOCK];
const IndexType THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const IndexType thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const IndexType thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const IndexType vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const IndexType vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const IndexType num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(IndexType row = vector_id; row < num_rows; row += num_vectors)
{
if(thread_lane == 0)
perm_row[vector_lane] = bfs_tree[row];
if(perm_row[vector_lane] < 0) continue;
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = Ap[perm_row[vector_lane] + thread_lane];
const IndexType row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const IndexType row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// check current row neighbors
for(IndexType jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR)
if(Aj[jj] == row) {
positions[row] = jj;
}
}
}
template <unsigned int THREADS_PER_VECTOR, typename Matrix, typename ArrayType>
void __bfs_edge_index_locator(const Matrix& A,
const ArrayType& bfs_tree,
ArrayType& positions)
{
typedef typename Matrix::index_type IndexType;
typedef typename Matrix::value_type ValueType;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(bfs_edge_index_locator_kernel<IndexType, ValueType, VECTORS_PER_BLOCK, THREADS_PER_VECTOR>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, cusp::detail::device::DIVIDE_INTO(A.num_rows, VECTORS_PER_BLOCK));
bfs_edge_index_locator_kernel<IndexType, ValueType, VECTORS_PER_BLOCK, THREADS_PER_VECTOR> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(A.num_rows,
thrust::raw_pointer_cast(&A.row_offsets[0]),
thrust::raw_pointer_cast(&A.column_indices[0]),
thrust::raw_pointer_cast(&A.values[0]),
thrust::raw_pointer_cast(&bfs_tree[0]),
thrust::raw_pointer_cast(&positions[0]));
}
template <typename Matrix,
typename ArrayType>
void bfs_edge_index_locator(const Matrix& A,
const ArrayType& bfs_tree,
ArrayType& positions)
{
typedef typename Matrix::index_type IndexType;
const IndexType nnz_per_row = A.num_entries / A.num_rows;
if (nnz_per_row <= 2) {
__bfs_edge_index_locator<2>(A, bfs_tree, positions);
return;
}
if (nnz_per_row <= 4) {
__bfs_edge_index_locator<4>(A, bfs_tree, positions);
return;
}
if (nnz_per_row <= 8) {
__bfs_edge_index_locator<8>(A, bfs_tree, positions);
return;
}
if (nnz_per_row <= 16) {
__bfs_edge_index_locator<16>(A, bfs_tree, positions);
return;
}
__bfs_edge_index_locator<32>(A, bfs_tree, positions);
}
} // end namespace detail
template<typename MatrixType, typename ArrayType, typename IndexType>
typename MatrixType::value_type
maximum_flow(const MatrixType& G, ArrayType& flow, IndexType src, IndexType sink)
{
typedef typename MatrixType::value_type ValueType;
typedef typename MatrixType::memory_space MemorySpace;
typedef cusp::csr_matrix_view<
typename MatrixType::row_offsets_array_type,
typename MatrixType::column_indices_array_type,
typename MatrixType::values_array_type> MatrixType_view;
const size_t N = G.num_rows;
// copy of column indices
cusp::array1d<IndexType,MemorySpace> column_indices(G.column_indices);
// create view using new column indices
MatrixType_view G_view(G.num_rows, G.num_cols, G.num_entries,
G.row_offsets, column_indices, G.values);
// initialize device memory arrays
cusp::array1d<IndexType,MemorySpace> bfs_tree(N);
cusp::array1d<IndexType,MemorySpace> positions(N);
// initialize host memory arrays
cusp::array1d<IndexType,cusp::host_memory> bfs_tree_h(N);
cusp::array1d<IndexType,cusp::host_memory> positions_h(N);
cusp::array1d<IndexType,cusp::host_memory> update_positions(N);
// copy of capacities to host
cusp::array1d<ValueType,cusp::host_memory> capacities(G.values);
ValueType max_flow = 0;
// Edmonds-Karp algorithm
while(1)
{
// Construct BFS tree starting from the source
cusp::graph::breadth_first_search<true>(G_view, src, bfs_tree);
bfs_tree_h = bfs_tree;
// Break when the sink is not reachable from the source
if( bfs_tree_h[sink] < 0 ) break;
// BFS implementation returns the parents but we need to update the actual edges
// Use a custom spmv-like kernel to find positions of BFS tree entries
detail::bfs_edge_index_locator(G_view, bfs_tree, positions);
positions_h = positions;
int path_length = 0;
IndexType curr_node = sink;
ValueType min_capacity = std::numeric_limits<ValueType>::max();
// Traverse BFS tree starting from sink and ending at source
while(curr_node != src)
{
// track the minimum capacity
min_capacity = std::min(capacities[positions_h[curr_node]], min_capacity);
curr_node = bfs_tree_h[curr_node];
path_length++;
}
if( min_capacity == 0 )
{
throw cusp::runtime_exception("Max-flow path from source to sink has zero capacity.");
}
max_flow += min_capacity;
int zero_capacity_edges = 0;
curr_node = sink;
while(curr_node != src)
{
// update the capacities using the minimum capacity
capacities[positions_h[curr_node]] -= min_capacity;
// track edges with zero capacity for filtering
if( capacities[positions_h[curr_node]] == 0 )
{
update_positions[zero_capacity_edges++] = positions_h[curr_node];
}
curr_node = bfs_tree_h[curr_node];
}
thrust::copy(update_positions.begin(), update_positions.begin() + zero_capacity_edges, positions.begin());
// edges with zero capacity are set to invalid vertex id
thrust::scatter(thrust::constant_iterator<IndexType>(-1),
thrust::constant_iterator<IndexType>(-1) + zero_capacity_edges,
positions.begin(),
G_view.column_indices.begin());
}
// copy updated capacities back to device
flow = capacities;
// flow is equal to the difference in the capacities
cusp::blas::axpby(G.values, flow, flow, 1, -1);
return max_flow;
}
#else
template<typename MatrixType, typename ArrayType, typename IndexType>
typename MatrixType::value_type
maximum_flow(const MatrixType& G, ArrayType& flow, IndexType src, IndexType sink)
{
throw cusp::runtime_exception("Maximum flow solver on GPU is experimental, not intended for production or benchmark usage.");
}
#endif
} // end namespace device
} // end namespace detail
} // end namespace graph
} // end namespace cusp
|