1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cusp/exception.h>
#include <cusp/csr_matrix.h>
#include <cusp/graph/detail/dispatch/maximum_flow.h>
namespace cusp
{
namespace graph
{
namespace detail
{
template<typename MatrixType, typename ArrayType, typename IndexType>
typename MatrixType::value_type
maximum_flow(const MatrixType& G, ArrayType& flow, const IndexType src, const IndexType sink, cusp::csr_format)
{
return cusp::graph::detail::dispatch::maximum_flow(G, flow, src, sink,
typename MatrixType::memory_space());
}
template<typename MatrixType, typename ArrayType1, typename ArrayType2, typename IndexType>
size_t max_flow_to_min_cut(const MatrixType& G, const ArrayType1& flow, const IndexType src, ArrayType2& min_cut_edges, cusp::csr_format)
{
typedef typename MatrixType::value_type ValueType;
typedef typename MatrixType::memory_space MemorySpace;
typedef cusp::csr_matrix_view<
typename MatrixType::row_offsets_array_type,
typename MatrixType::column_indices_array_type,
typename MatrixType::values_array_type> MatrixType_view;
cusp::array1d<IndexType,MemorySpace> row_indices(G.num_entries);
cusp::array1d<ValueType,MemorySpace> residual(G.num_entries);
cusp::array1d<ValueType,MemorySpace> labels(G.num_rows, -1);
// construct row indices
cusp::detail::offsets_to_indices(G.row_offsets, row_indices);
// copy of column indices
cusp::array1d<IndexType,MemorySpace> column_indices(G.column_indices);
// create view using new column indices
MatrixType_view G_view(G.num_rows, G.num_cols, G.num_entries,
G.row_offsets, column_indices, G.values);
// residual is equal to the difference in capacity and flow
cusp::blas::axpby(G.values, flow, residual, 1, -1);
// edges with zero capacity are set to invalid vertex id
thrust::replace_if(G_view.column_indices.begin(), G_view.column_indices.end(),
residual.begin(), thrust::logical_not<IndexType>(), IndexType(-1));
// Construct BFS levels starting from the source
cusp::graph::breadth_first_search<false>(G_view, src, labels);
// partition vertices into sets marked as -1 or 1
thrust::replace_if(labels.begin(), labels.end(), thrust::placeholders::_1 != -1, IndexType(1));
// identify edges spanning both sets
thrust::transform(thrust::make_permutation_iterator(labels.begin(), row_indices.begin()),
thrust::make_permutation_iterator(labels.begin(), row_indices.end()),
thrust::make_permutation_iterator(labels.begin(), G.column_indices.begin()),
min_cut_edges.begin(), thrust::not_equal_to<IndexType>());
return thrust::reduce(min_cut_edges.begin(), min_cut_edges.end());
}
//////////////////
// General Path //
//////////////////
template<typename MatrixType, typename ArrayType, typename IndexType, typename Format>
typename MatrixType::value_type
size_tmaximum_flow(const MatrixType& G, ArrayType& flow, const IndexType src, const IndexType sink, Format)
{
typedef typename MatrixType::value_type ValueType;
typedef typename MatrixType::memory_space MemorySpace;
// convert matrix to CSR format and compute on the host
cusp::csr_matrix<IndexType,ValueType,MemorySpace> G_csr(G);
return cusp::graph::maximum_flow(G_csr, flow, src, sink);
}
template<typename MatrixType, typename ArrayType1, typename ArrayType2, typename IndexType, typename Format>
size_t max_flow_to_min_cut(const MatrixType& G, const ArrayType1& flow, const IndexType src, ArrayType2& min_cut_edges, Format)
{
typedef typename MatrixType::value_type ValueType;
typedef typename MatrixType::memory_space MemorySpace;
// convert matrix to CSR format and compute on the host
cusp::csr_matrix<IndexType,ValueType,MemorySpace> G_csr(G);
return cusp::graph::max_flow_to_min_cut(G_csr, flow, src, min_cut_edges);
}
} // end namespace detail
/////////////////
// Entry Point //
/////////////////
template<typename MatrixType, typename ArrayType, typename IndexType>
typename MatrixType::value_type
maximum_flow(const MatrixType& G, ArrayType& flow, const IndexType src, const IndexType sink)
{
CUSP_PROFILE_SCOPED();
if(G.num_rows != G.num_cols)
throw cusp::invalid_input_exception("matrix must be square");
return cusp::graph::detail::maximum_flow(G, flow, src, sink,
typename MatrixType::format());
}
template<typename MatrixType, typename IndexType>
typename MatrixType::value_type
maximum_flow(const MatrixType& G, const IndexType src, const IndexType sink)
{
typedef typename MatrixType::value_type ValueType;
typedef typename MatrixType::memory_space MemorySpace;
cusp::array1d<ValueType,MemorySpace> flow(G.num_entries);
return cusp::graph::detail::maximum_flow(G, flow, src, sink,
typename MatrixType::format());
}
template<typename MatrixType, typename ArrayType1, typename ArrayType2, typename IndexType>
size_t max_flow_to_min_cut(const MatrixType& G, const ArrayType1& flow, const IndexType src, ArrayType2& min_cut_edges)
{
CUSP_PROFILE_SCOPED();
if(G.num_rows != G.num_cols)
throw cusp::invalid_input_exception("matrix must be square");
return cusp::graph::detail::max_flow_to_min_cut(G, flow, src, min_cut_edges,
typename MatrixType::format());
}
} // end namespace graph
} // end namespace cusp
|