File: bicgstab.h

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (127 lines) | stat: -rw-r--r-- 3,736 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/*
 *  Copyright 2008-2009 NVIDIA Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/*! \file bicgstab.h
 *  \brief Biconjugate Gradient Stabilized (BiCGstab) method
 */

#pragma once

#include <cusp/detail/config.h>

namespace cusp
{
namespace krylov
{
/*! \addtogroup iterative_solvers Iterative Solvers
 *  \addtogroup krylov_methods Krylov Methods
 *  \ingroup iterative_solvers
 *  \{
 */

/*! \p bicgstab : Biconjugate Gradient Stabilized method
 *
 * Solves the linear system A x = b using the default convergence criteria.
 */
template <class LinearOperator,
          class Vector>
void bicgstab(LinearOperator& A,
              Vector& x,
              Vector& b);

/*! \p bicgstab : Biconjugate Gradient Stabilized method
 *
 * Solves the linear system A x = b without preconditioning.
 */
template <class LinearOperator,
          class Vector,
          class Monitor>
void bicgstab(LinearOperator& A,
              Vector& x,
              Vector& b,
              Monitor& monitor);

/*! \p bicgstab : Biconjugate Gradient Stabilized method
 *
 * Solves the linear system A x = b with preconditioner \p M.
 *
 * \param A matrix of the linear system 
 * \param x approximate solution of the linear system
 * \param b right-hand side of the linear system
 * \param monitor montiors iteration and determines stopping conditions
 * \param M preconditioner for A
 *
 * \tparam LinearOperator is a matrix or subclass of \p linear_operator
 * \tparam Vector vector
 * \tparam Monitor is a monitor such as \p default_monitor or \p verbose_monitor
 * \tparam Preconditioner is a matrix or subclass of \p linear_operator
 *
 *  The following code snippet demonstrates how to use \p bicgstab to 
 *  solve a 10x10 Poisson problem.
 *
 *  \code
 *  #include <cusp/csr_matrix.h>
 *  #include <cusp/monitor.h>
 *  #include <cusp/krylov/bicgstab.h>
 *  #include <cusp/gallery/poisson.h>
 *  
 *  int main(void)
 *  {
 *      // create an empty sparse matrix structure (CSR format)
 *      cusp::csr_matrix<int, float, cusp::device_memory> A;
 *
 *      // initialize matrix
 *      cusp::gallery::poisson5pt(A, 10, 10);
 *
 *      // allocate storage for solution (x) and right hand side (b)
 *      cusp::array1d<float, cusp::device_memory> x(A.num_rows, 0);
 *      cusp::array1d<float, cusp::device_memory> b(A.num_rows, 1);
 *
 *      // set stopping criteria:
 *      //  iteration_limit    = 100
 *      //  relative_tolerance = 1e-6
 *      cusp::verbose_monitor<float> monitor(b, 100, 1e-6);
 *
 *      // set preconditioner (identity)
 *      cusp::identity_operator<float, cusp::device_memory> M(A.num_rows, A.num_rows);
 *
 *      // solve the linear system A x = b
 *      cusp::krylov::bicgstab(A, x, b, monitor, M);
 *
 *      return 0;
 *  }
 *  \endcode
 *
 *  \see \p default_monitor
 *  \see \p verbose_monitor
 */
template <class LinearOperator,
          class Vector,
          class Monitor,
          class Preconditioner>
void bicgstab(LinearOperator& A,
              Vector& x,
              Vector& b,
              Monitor& monitor,
              Preconditioner& M);
/*! \}
 */

} // end namespace krylov
} // end namespace cusp

#include <cusp/krylov/detail/bicgstab.inl>