1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file cg.h
* \brief Conjugate Gradient (CG) method
*/
#pragma once
#include <cusp/detail/config.h>
namespace cusp
{
namespace krylov
{
/*! \addtogroup iterative_solvers Iterative Solvers
* \addtogroup krylov_methods Krylov Methods
* \ingroup iterative_solvers
* \{
*/
/*! \p cg : Conjugate Gradient method
*
* Solves the symmetric, positive-definite linear system A x = b
* using the default convergence criteria.
*/
template <class LinearOperator,
class Vector>
void cg(LinearOperator& A,
Vector& x,
Vector& b);
/*! \p cg : Conjugate Gradient method
*
* Solves the symmetric, positive-definite linear system A x = b without preconditioning.
*/
template <class LinearOperator,
class Vector,
class Monitor>
void cg(LinearOperator& A,
Vector& x,
Vector& b,
Monitor& monitor);
/*! \p cg : Conjugate Gradient method
*
* Solves the symmetric, positive-definite linear system A x = b
* with preconditioner \p M.
*
* \param A matrix of the linear system
* \param x approximate solution of the linear system
* \param b right-hand side of the linear system
* \param monitor montiors iteration and determines stopping conditions
* \param M preconditioner for A
*
* \tparam LinearOperator is a matrix or subclass of \p linear_operator
* \tparam Vector vector
* \tparam Monitor is a monitor such as \p default_monitor or \p verbose_monitor
* \tparam Preconditioner is a matrix or subclass of \p linear_operator
*
* \note \p A and \p M must be symmetric and positive-definite.
*
* The following code snippet demonstrates how to use \p cg to
* solve a 10x10 Poisson problem.
*
* \code
* #include <cusp/csr_matrix.h>
* #include <cusp/monitor.h>
* #include <cusp/krylov/cg.h>
* #include <cusp/gallery/poisson.h>
*
* int main(void)
* {
* // create an empty sparse matrix structure (CSR format)
* cusp::csr_matrix<int, float, cusp::device_memory> A;
*
* // initialize matrix
* cusp::gallery::poisson5pt(A, 10, 10);
*
* // allocate storage for solution (x) and right hand side (b)
* cusp::array1d<float, cusp::device_memory> x(A.num_rows, 0);
* cusp::array1d<float, cusp::device_memory> b(A.num_rows, 1);
*
* // set stopping criteria:
* // iteration_limit = 100
* // relative_tolerance = 1e-6
* cusp::verbose_monitor<float> monitor(b, 100, 1e-6);
*
* // set preconditioner (identity)
* cusp::identity_operator<float, cusp::device_memory> M(A.num_rows, A.num_rows);
*
* // solve the linear system A x = b
* cusp::krylov::cg(A, x, b, monitor, M);
*
* return 0;
* }
* \endcode
* \see \p default_monitor
* \see \p verbose_monitor
*
*/
template <class LinearOperator,
class Vector,
class Monitor,
class Preconditioner>
void cg(LinearOperator& A,
Vector& x,
Vector& b,
Monitor& monitor,
Preconditioner& M);
/*! \}
*/
} // end namespace krylov
} // end namespace cusp
#include <cusp/krylov/detail/cg.inl>
|