File: gmres.inl

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (202 lines) | stat: -rw-r--r-- 6,028 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
 *  Copyright 2011 The Regents of the University of California
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
#include <cusp/array1d.h>
#include <cusp/blas.h>
#include <cusp/multiply.h>
#include <cusp/monitor.h>
#include <cusp/linear_operator.h>

namespace blas = cusp::blas;
namespace cusp
{
  namespace krylov
  {    
    template <typename ValueType> 
    void ApplyPlaneRotation(ValueType& dx,
			    ValueType& dy,
			    ValueType& cs,
			    ValueType& sn)
    {
      ValueType temp = cs * dx + sn *dy;
      dy = -sn*dx+cs*dy;
      dx = temp;
    }

    template <typename ValueType>
    void GeneratePlaneRotation(ValueType& dx,
			       ValueType& dy,
			       ValueType& cs,
			       ValueType& sn)
    {
      if(dy == ValueType(0.0)){
	cs = 1.0;
	sn = 0.0;
      }else if (abs(dy) > abs(dx)) {
	ValueType tmp = dx / dy;
	sn = ValueType(1.0) / sqrt(ValueType(1.0) + tmp*tmp);
	cs = tmp*sn;            
      }else {
	ValueType tmp = dy / dx;
	cs = ValueType(1.0) / sqrt(ValueType(1.0) + tmp*tmp);
	sn = tmp*cs;
      }
    }

    template <class LinearOperator,typename ValueType> 
    void PlaneRotation(LinearOperator& H,
		       ValueType& cs,
		       ValueType& sn,
		       ValueType& s,
		       int i)
    {
      for (int k = 0; k < i; k++){
	ApplyPlaneRotation(H(k,i), H(k+1,i), cs[k], sn[k]);
      }
      GeneratePlaneRotation(H(i,i), H(i+1,i), cs[i], sn[i]);
      ApplyPlaneRotation(H(i,i), H(i+1,i), cs[i], sn[i]);
      ApplyPlaneRotation(s[i], s[i+1], cs[i], sn[i]);
    }

    template <class LinearOperator,
	      class Vector>
    void gmres(LinearOperator& A,
	       Vector& x,
	       Vector& b,
	       const size_t restart)
    {
      typedef typename LinearOperator::value_type   ValueType;
      cusp::default_monitor<ValueType> monitor(b);
      cusp::krylov::gmres(A, x, b, restart, monitor);
    }

    template <class LinearOperator,
	      class Vector,
	      class Monitor>
    void gmres(LinearOperator& A,
	       Vector& x,
	       Vector& b,
	       const size_t restart,
	       Monitor& monitor)
    {
      typedef typename LinearOperator::value_type   ValueType;
      typedef typename LinearOperator::memory_space MemorySpace;
      cusp::identity_operator<ValueType,MemorySpace> M(A.num_rows, A.num_cols);
      cusp::krylov::gmres(A, x, b, restart, monitor, M);
    }
    
    template <class LinearOperator,
	      class Vector,
	      class Monitor,
	      class Preconditioner>
    void gmres(LinearOperator& A,
	       Vector& x,
	       Vector& b,
	       const size_t restart,
	       Monitor& monitor,
	       Preconditioner& M)
    {
      typedef typename LinearOperator::value_type   ValueType;
      typedef typename LinearOperator::memory_space MemorySpace;
      typedef typename norm_type<ValueType>::type NormType;
      assert(A.num_rows == A.num_cols);        // sanity check
      const size_t N = A.num_rows;
      const int R = restart;
      int i, j, k;
      NormType beta = 0;
      cusp::array1d<NormType,cusp::host_memory> resid(1);
      //allocate workspace
      cusp::array1d<ValueType,MemorySpace> w(N);
      cusp::array1d<ValueType,MemorySpace> V0(N); //Arnoldi matrix pos 0
      cusp::array2d<ValueType,MemorySpace,cusp::column_major> V(N,R+1,ValueType(0.0)); //Arnoldi matrix
      //duplicate copy of s on GPU
      cusp::array1d<ValueType,MemorySpace> sDev(R+1);
      //HOST WORKSPACE
      cusp::array2d<ValueType,cusp::host_memory,cusp::column_major> H(R+1, R); //Hessenberg matrix
      cusp::array1d<ValueType,cusp::host_memory> s(R+1);
      cusp::array1d<ValueType,cusp::host_memory> cs(R);
      cusp::array1d<ValueType,cusp::host_memory> sn(R);
      do{
	// compute initial residual and its norm //
	cusp::multiply(A, x, w);                     // V(0) = A*x        //
	blas::axpy(b,w,ValueType(-1));               // V(0) = V(0) - b   //
	cusp::multiply(M,w,w);                       // V(0) = M*V(0)     //
	beta = blas::nrm2(w);                        // beta = norm(V(0)) //
	blas::scal(w, ValueType(-1.0/beta));         // V(0) = -V(0)/beta //
	blas::copy(w,V.column(0));
	//s = 0 //
	blas::fill(s,ValueType(0.0));
	s[0] = beta;
	i = -1;
	resid[0] = abs(s[0]);
	if (monitor.finished(resid)){
	  break;
	}

	do{
	  ++i;
	  ++monitor;
	  
	  //apply preconditioner
	  //can't pass in ref to column in V so need to use copy (w)
	  cusp::multiply(A,w,V0);
	  //V(i+1) = A*w = M*A*V(i)    //
	  cusp::multiply(M,V0,w);
	  
	  for (k = 0; k <= i; k++){
	    //  H(k,i) = <V(i+1),V(k)>    //
	    H(k, i) = blas::dotc(w, V.column(k));
	    // V(i+1) -= H(k, i) * V(k)  //
	    blas::axpy(V.column(k),w,-H(k,i));
	  }
	  
	  H(i+1,i) = blas::nrm2(w);   
	  // V(i+1) = V(i+1) / H(i+1, i) //
	  blas::scal(w,ValueType(1.0)/H(i+1,i));
	  blas::copy(w,V.column(i+1));
	  
	  PlaneRotation(H,cs,sn,s,i);
	  
	  resid[0] = abs(s[i+1]);
	  
	  //check convergence condition
	  if (monitor.finished(resid)){
	    break;
	  }
	}while (i+1 < R && monitor.iteration_count()+1 <= monitor.iteration_limit());
	

	// solve upper triangular system in place //
	for (j = i; j >= 0; j--){
	  s[j] /= H(j,j);
	  //S(0:j) = s(0:j) - s[j] H(0:j,j)
	  for (k = j-1; k >= 0; k--){
	    s[k] -= H(k,j) * s[j];
	  }
	}
	
	// update the solution //
	
	//copy s to gpu 
	blas::copy(s,sDev);
	// x= V(1:N,0:i)*s(0:i)+x //
	for (j = 0; j <= i; j++){
	  // x = x + s[j] * V(j) //
	  blas::axpy(V.column(j),x,s[j]);
	}
      } while (!monitor.finished(resid));
    }
  } // end namespace krylov
} // end namespace cusp