1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cusp/blas.h>
#include <cusp/elementwise.h>
#include <cusp/multiply.h>
#include <cusp/detail/format_utils.h>
namespace cusp
{
namespace precond
{
namespace aggregation
{
namespace detail
{
template <typename Matrix>
void setup_level_matrix(Matrix& dst, Matrix& src) {
dst.swap(src);
}
template <typename Matrix1, typename Matrix2>
void setup_level_matrix(Matrix1& dst, Matrix2& src) {
dst = src;
}
} // end namespace detail
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
template <typename MatrixType>
smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::smoothed_aggregation(const MatrixType& A)
: sa_options(default_sa_options)
{
typedef typename cusp::array1d_view< thrust::constant_iterator<ValueType> > ConstantView;
ConstantView B(thrust::constant_iterator<ValueType>(1),
thrust::constant_iterator<ValueType>(1) + A.num_rows);
sa_initialize(A, B);
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
template <typename MatrixType, typename Options>
smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::smoothed_aggregation(const MatrixType& A,
const Options& sa_options)
: sa_options(sa_options)
{
typedef typename cusp::array1d_view< thrust::constant_iterator<ValueType> > ConstantView;
ConstantView B(thrust::constant_iterator<ValueType>(1),
thrust::constant_iterator<ValueType>(1) + A.num_rows);
sa_initialize(A, B);
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
template <typename MatrixType>
smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::smoothed_aggregation(const MatrixType& A, const cusp::array1d<ValueType,MemorySpace>& B)
: sa_options(default_sa_options)
{
sa_initialize(A, B);
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
template <typename MatrixType, typename Options>
smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::smoothed_aggregation(const MatrixType& A, const cusp::array1d<ValueType,MemorySpace>& B,
const Options& sa_options)
: sa_options(sa_options)
{
sa_initialize(A, B);
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
template <typename MemorySpace2, typename SmootherType2, typename SolverType2>
smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::smoothed_aggregation(const smoothed_aggregation<IndexType,ValueType,MemorySpace2,SmootherType2,SolverType2>& M)
: sa_options(M.sa_options), Parent(M)
{
for( size_t lvl = 0; lvl < M.sa_levels.size(); lvl++ )
sa_levels.push_back(M.sa_levels[lvl]);
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
template <typename MatrixType, typename ArrayType>
void smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::sa_initialize(const MatrixType& A, const ArrayType& B)
{
CUSP_PROFILE_SCOPED();
Parent* ML = this;
ML->levels.reserve(sa_options.max_levels); // avoid reallocations which force matrix copies
sa_levels.push_back(sa_level<SetupMatrixType>());
ML->levels.push_back(typename Parent::level());
sa_levels.back().B = B;
sa_levels.back().A_ = A; // copy
while ((sa_levels.back().A_.num_rows > sa_options.min_level_size) &&
(sa_levels.size() < sa_options.max_levels))
extend_hierarchy();
ML->solver = SolverType(sa_levels.back().A_);
// Setup solve matrix for each level
for( size_t lvl = 0; lvl < sa_levels.size(); lvl++ )
detail::setup_level_matrix( ML->levels[lvl].A, sa_levels[lvl].A_ );
}
template <typename IndexType, typename ValueType, typename MemorySpace, typename SmootherType, typename SolverType>
void smoothed_aggregation<IndexType,ValueType,MemorySpace,SmootherType,SolverType>
::extend_hierarchy(void)
{
CUSP_PROFILE_SCOPED();
Parent* ML = this;
cusp::array1d<IndexType,MemorySpace> aggregates;
{
// compute stength of connection matrix
SetupMatrixType C;
sa_options.strength_of_connection(sa_levels.back().A_, C);
// compute aggregates
aggregates.resize(C.num_rows);
cusp::blas::fill(aggregates,IndexType(0));
sa_options.aggregate(C, aggregates);
}
SetupMatrixType P;
cusp::array1d<ValueType,MemorySpace> B_coarse;
{
// compute tenative prolongator and coarse nullspace vector
SetupMatrixType T;
sa_options.fit_candidates(aggregates, sa_levels.back().B, T, B_coarse);
// compute prolongation operator
sa_options.smooth_prolongator(sa_levels.back().A_, T, P, sa_levels.back().rho_DinvA); // TODO if C != A then compute rho_Dinv_C
}
// compute restriction operator (transpose of prolongator)
SetupMatrixType R;
sa_options.form_restriction(P,R);
// construct Galerkin product R*A*P
SetupMatrixType RAP;
sa_options.galerkin_product(R,sa_levels.back().A_,P,RAP);
ML->levels.back().smoother = SmootherType(sa_levels.back());
sa_levels.back().aggregates.swap(aggregates);
detail::setup_level_matrix( ML->levels.back().R, R );
detail::setup_level_matrix( ML->levels.back().P, P );
ML->levels.back().residual.resize(sa_levels.back().A_.num_rows);
ML->levels.push_back(typename Parent::level());
sa_levels.push_back(sa_level<SetupMatrixType>());
sa_levels.back().A_.swap(RAP);
sa_levels.back().B.swap(B_coarse);
ML->levels.back().x.resize(sa_levels.back().A_.num_rows);
ML->levels.back().b.resize(sa_levels.back().A_.num_rows);
}
} // end namespace aggregation
} // end namespace precond
} // end namespace cusp
|