1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cusp/coo_matrix.h>
#include <cusp/csr_matrix.h>
#include <cusp/hyb_matrix.h>
#include <cusp/transpose.h>
#include <cusp/multiply.h>
#include <cusp/krylov/arnoldi.h>
#include <cusp/precond/diagonal.h>
#include <cusp/precond/aggregation/aggregate.h>
#include <cusp/precond/aggregation/smooth.h>
#include <cusp/precond/aggregation/strength.h>
#include <cusp/precond/aggregation/tentative.h>
namespace cusp
{
namespace precond
{
namespace aggregation
{
namespace detail
{
template <typename MatrixType>
struct Dinv_A : public cusp::linear_operator<typename MatrixType::value_type, typename MatrixType::memory_space>
{
const MatrixType& A;
const cusp::precond::diagonal<typename MatrixType::value_type, typename MatrixType::memory_space> Dinv;
Dinv_A(const MatrixType& A)
: A(A), Dinv(A),
cusp::linear_operator<typename MatrixType::value_type, typename MatrixType::memory_space>(A.num_rows, A.num_cols, A.num_entries + A.num_rows)
{}
template <typename Array1, typename Array2>
void operator()(const Array1& x, Array2& y) const
{
cusp::multiply(A,x,y);
cusp::multiply(Dinv,y,y);
}
};
template <typename MatrixType>
double estimate_rho_Dinv_A(const MatrixType& A)
{
detail::Dinv_A<MatrixType> Dinv_A(A);
return cusp::detail::ritz_spectral_radius(Dinv_A, 8);
}
} // end namespace detail
template <typename IndexType, typename ValueType, typename MemorySpace>
struct amg_container {};
template <typename IndexType, typename ValueType>
struct amg_container<IndexType,ValueType,cusp::host_memory>
{
// use CSR on host
typedef typename cusp::csr_matrix<IndexType,ValueType,cusp::host_memory> setup_type;
typedef typename cusp::csr_matrix<IndexType,ValueType,cusp::host_memory> solve_type;
};
template <typename IndexType, typename ValueType>
struct amg_container<IndexType,ValueType,cusp::device_memory>
{
// use COO on device
typedef typename cusp::coo_matrix<IndexType,ValueType,cusp::device_memory> setup_type;
typedef typename cusp::hyb_matrix<IndexType,ValueType,cusp::device_memory> solve_type;
};
template<typename IndexType, typename ValueType, typename MemorySpace>
class smoothed_aggregation_options
{
public:
typedef typename amg_container<IndexType,ValueType,MemorySpace>::setup_type MatrixType;
typedef cusp::array1d<IndexType,MemorySpace> IndexArray;
typedef cusp::array1d<ValueType,MemorySpace> ValueArray;
const ValueType theta;
const ValueType omega;
const size_t min_level_size;
const size_t max_levels;
smoothed_aggregation_options(const ValueType theta = 0.0, const ValueType omega = 4.0/3.0,
const size_t min_level_size = 100, const size_t max_levels = 20)
: theta(theta), omega(omega), min_level_size(min_level_size), max_levels(max_levels)
{}
template<typename MemorySpace2>
smoothed_aggregation_options(const smoothed_aggregation_options<IndexType,ValueType,MemorySpace2>& M)
: theta(M.theta), omega(M.omega), min_level_size(M.min_level_size), max_levels(M.max_levels)
{}
virtual void strength_of_connection(const MatrixType& A, MatrixType& C) const
{
cusp::precond::aggregation::symmetric_strength_of_connection(A, C, theta);
}
virtual void aggregate(const MatrixType& C, IndexArray& aggregates) const
{
cusp::precond::aggregation::standard_aggregation(C, aggregates);
}
virtual void fit_candidates(const IndexArray& aggregates, const ValueArray& B, MatrixType& T, ValueArray& B_coarse) const
{
cusp::precond::aggregation::fit_candidates(aggregates, B, T, B_coarse);
}
virtual void smooth_prolongator(const MatrixType& A, const MatrixType& T, MatrixType& P, ValueType& rho_DinvA) const
{
// compute spectral radius of diag(C)^-1 * C
rho_DinvA = detail::estimate_rho_Dinv_A(A);
cusp::precond::aggregation::smooth_prolongator(A, T, P, omega, rho_DinvA);
}
virtual void form_restriction(const MatrixType& P, MatrixType& R) const
{
cusp::transpose(P,R);
}
virtual void galerkin_product(const MatrixType& R, const MatrixType& A, const MatrixType& P, MatrixType& RAP) const
{
// TODO test speed of R * (A * P) vs. (R * A) * P
MatrixType AP;
cusp::multiply(A, P, AP);
cusp::multiply(R, AP, RAP);
}
};
} // end namespace aggregation
} // end namespace precond
} // end namespace cusp
|