1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
#include <unittest/unittest.h>
#include <cusp/gallery/poisson.h>
#include <cusp/csr_matrix.h>
#include <cusp/krylov/cg_m.h>
template <class LinearOperator, class VectorType1, class VectorType2, class VectorType3>
void check_residuals(LinearOperator& A, VectorType1& xs, VectorType2& b, VectorType3& sigma)
{
typedef typename LinearOperator::value_type ValueType;
typedef typename LinearOperator::memory_space MemorySpace;
size_t N = A.num_rows;
for (size_t i = 0; i < sigma.size(); i++)
{
// compute residual = b - (A + \sigma * I) x
ValueType s = sigma[i];
cusp::array1d<ValueType, MemorySpace> residual(A.num_rows, 0.0f);
// TODO replace this with a array1d view of a array2d
cusp::array1d<ValueType, MemorySpace> x(xs.begin() + i * N, xs.begin() + (i + 1) * N);
cusp::multiply(A, x, residual);
cusp::blas::axpby(residual, x, residual, 1.0f, s);
cusp::blas::axpby(residual, b, residual, -1.0f, 1.0f);
ASSERT_EQUAL(cusp::blas::nrm2(residual) < 1e-4 * cusp::blas::nrm2(b), true);
//std::cout << "Residual for sigma = " << s << " is " << cusp::blas::nrm2(residual) << std::endl;
}
} // end check_residuals
template <class MemorySpace>
void TestConjugateGradientM(void)
{
// which floating point type to use
typedef float ValueType;
// create an empty sparse matrix structure (HYB format)
cusp::csr_matrix<int, ValueType, MemorySpace> A;
// create a 2d Poisson problem on a 10x10 mesh
cusp::gallery::poisson5pt(A, 10, 10);
// allocate storage for solution (x) and right hand side (b)
size_t N_s = 4;
cusp::array1d<ValueType, MemorySpace> x(A.num_rows*N_s, ValueType(0));
cusp::array1d<ValueType, MemorySpace> b(A.num_rows, ValueType(1));
// set sigma values
cusp::array1d<ValueType, MemorySpace> sigma(N_s);
sigma[0] = ValueType(0.1);
sigma[1] = ValueType(0.5);
sigma[2] = ValueType(1.0);
sigma[3] = ValueType(5.0);
// set stopping criteria:
// iteration_limit = 100
// relative_tolerance = 1e-6
cusp::default_monitor<ValueType> monitor(b, 100, 1e-6);
// solve the linear systems (A + \sigma_i * I) * x = b for each
// sigma_i with the Conjugate Gradient method
cusp::krylov::cg_m(A, x, b, sigma, monitor);
check_residuals(A, x, b, sigma);
}
DECLARE_HOST_DEVICE_UNITTEST(TestConjugateGradientM);
|