File: complex.cu

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (459 lines) | stat: -rw-r--r-- 14,003 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#include <unittest/unittest.h>
#include <cusp/array1d.h>
#include <cusp/complex.h>
#include <complex>

#include <cusp/verify.h>

#define ASSERT_COMPLEX_ALMOST_EQUAL(X,Y) {unittest::assert_almost_equal((X.real()),(Y.real()), __FILE__, __LINE__);unittest::assert_almost_equal((X.imag()),(Y.imag()), __FILE__, __LINE__);}

template< typename T1, typename T2 >
struct is_same_type      { enum { result = false }; };

template< typename T>
struct is_same_type<T,T> { enum { result = true }; };

#ifdef __GNUC__
extern "C"{
  float __complex__ cacosf(float __complex__ z);
  double __complex__ cacos(double __complex__ z);
  float __complex__ casinf(float __complex__ z);
  double __complex__ casin(double __complex__ z);
  float __complex__ catanf(float __complex__ z);
  double __complex__ catan(double __complex__ z);
  float __complex__ cacoshf(float __complex__ z);
  double __complex__ cacosh(double __complex__ z);
  float __complex__ casinhf(float __complex__ z);
  double __complex__ casinh(double __complex__ z);
  float __complex__ catanhf(float __complex__ z);
  double __complex__ catanh(double __complex__ z);
  double creal(double __complex__ z);
  double cimag(double __complex__ z);
}
#endif


// Macro to create host and device versions of a unit test
#define DECLARE_NUMERIC_UNITTEST(VTEST)                    \
void VTEST##Float(void)   {  VTEST<float>(); }  \
void VTEST##Double(void)   {  VTEST<double>(); }  \
DECLARE_UNITTEST(VTEST##Float);                                 \
DECLARE_UNITTEST(VTEST##Double);

template <typename ValueType>
__host__ bool compareWithStd(cusp::complex<ValueType> a){
  //  std::cout << "Testing " << a << std::endl; 
  cusp::complex<ValueType> b(a.real(),a.imag());
  std::complex<ValueType> s_a(a.real(),a.imag());
  std::complex<ValueType> s_b(b.real(),b.imag());
  ASSERT_COMPLEX_ALMOST_EQUAL(a,s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b += a;
  s_b += s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b -= a;
  s_b -= s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b *= a;
  s_b *= s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b /= a;
  s_b /= s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

  b = a*ValueType(2.0);
  s_b = s_a*ValueType(2.0);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = ValueType(2.0)*a;
  s_b = ValueType(2.0)*s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = b*a;
  s_b = s_b*s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = a/ValueType(2.0);
  s_b = s_a/ValueType(2.0);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = ValueType(2.0)/a;
  s_b = ValueType(2.0)/s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = a/b;
  s_b = s_a/s_b;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = a-ValueType(2.0);
  s_b = s_a-ValueType(2.0);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = ValueType(2.0)-a;
  s_b = ValueType(2.0)-s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = a-b;
  s_b = s_a-s_b;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = a+ValueType(2.0);
  s_b = s_a+ValueType(2.0);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = ValueType(2.0)+a;
  s_b = ValueType(2.0)+s_a;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = a+b;
  s_b = s_a+s_b;
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

  b = cusp::abs(a);
  s_b = std::abs(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::arg(a);
  s_b = std::arg(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::norm(a);
  s_b = std::norm(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::conj(a);
  s_b = std::conj(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::polar(norm(a),a.imag());
  s_b = std::polar(norm(a),a.imag());
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

  b = cusp::cos(a);
  s_b = std::cos(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::cosh(a);
  s_b = std::cosh(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::exp(a);
  s_b = std::exp(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

  b = cusp::log(a);
  s_b = std::log(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::log10(a);
  s_b = std::log10(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

  b = cusp::pow(a,b);
  s_b = std::pow(s_a,s_b);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::pow(a,ValueType(1.3));
  s_b = std::pow(s_a,ValueType(1.3));
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::pow(ValueType(1.4),a);
  s_b = std::pow(ValueType(1.4),s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  // Missing int implentation in std
  b = cusp::pow(a,4);
  s_b = std::pow(s_a,ValueType(4.0));
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::sin(a);
  s_b = std::sin(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::sinh(a);
  s_b = std::sinh(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::sqrt(a);
  s_b = std::sqrt(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::tan(a);  
  s_b = std::tan(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  b = cusp::tanh(a);
  s_b = std::tanh(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

  // Inverse trigonometic functions not part of standard 
  /*
  a = cusp::acos(b);
  s_a = std::acos(s_b);
  ASSERT_COMPLEX_ALMOST_EQUAL(a,s_a);
  b = cusp::asin(a);
  s_b = std::asin(s_a);
  ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
  a = cusp::atan(b);
  s_a = std::atan(s_b);
  ASSERT_COMPLEX_ALMOST_EQUAL(a,s_a);
  */

#ifdef __GNUC__  
  /* Use the c99 complex function from gcc to test the
   function not part of the standard */
  if(is_same_type<ValueType,float>::result){
    __complex__ float g_a;
    __complex__ float g_b;
    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::acos(a);
    g_b = cacosf(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::asin(a);
    g_b = casinf(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::atan(a);
    g_b = catanf(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::acosh(a);
    g_b = cacoshf(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::asinh(a);
    g_b = casinhf(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    if(a != cusp::complex<ValueType>(1,0)){
      g_a = s_a.real() + s_a.imag()*__I__;
      g_b = s_b.real() + s_b.imag()*__I__;
      b = cusp::atanh(a);
      g_b = catanhf(g_a);
      s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
      ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
    }
  }else if(is_same_type<ValueType,double>::result){
    __complex__ double g_a;
    __complex__ double g_b;
    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::acos(a);
    g_b = cacos(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::asin(a);
    g_b = casin(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::atan(a);
    g_b = catan(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::acosh(a);
    g_b = cacosh(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    g_a = s_a.real() + s_a.imag()*__I__;
    g_b = s_b.real() + s_b.imag()*__I__;
    b = cusp::asinh(a);
    g_b = casinh(g_a);
    s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
    ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);

    if(a != cusp::complex<ValueType>(1,0)){
      g_a = s_a.real() + s_a.imag()*__I__;
      g_b = s_b.real() + s_b.imag()*__I__;
      b = cusp::atanh(a);
      g_b = catanh(g_a);
      s_b = std::complex<ValueType>(creal(g_b),cimag(g_b));
      ASSERT_COMPLEX_ALMOST_EQUAL(b,s_b);
    }
  }
#endif
  return true;
}

template <typename ValueType>
__host__ __device__ cusp::complex<ValueType> test_complex_members(){
  cusp::complex<ValueType> a(ValueType(1.0),ValueType(1.0));
  cusp::complex<ValueType> b(ValueType(2.0),ValueType(1.0));
  a += b;
  a -= b;
  a *= b;
  a /= b;
  return a;
}


template <typename ValueType>
__host__ __device__ cusp::complex<ValueType> test_complex_non_members(){
  cusp::complex<ValueType> a(ValueType(3.0),ValueType(1.0));
  cusp::complex<ValueType> b(ValueType(2.0),ValueType(-1.0));
  a = a*ValueType(2.0);
  a = ValueType(2.0)*b;
  a = a*b;
  a = a/ValueType(2.0);
  a = ValueType(2.0)/b;
  a = a/b;
  a = a-ValueType(2.0);
  a = ValueType(2.0)-b;
  a = a-b;
  a = a+ValueType(2.0);
  a = ValueType(2.0)+b;
  a = a+b;
  b = cusp::abs(b);
  b = cusp::arg(b);
  b = cusp::norm(b);
  b = cusp::conj(b);
  b = cusp::polar(ValueType(0.3),ValueType(3.0));

  a = cusp::cos(b);
  b = cusp::cosh(a);
  a = cusp::exp(b);

  b = cusp::log(a);
  a = cusp::log10(b);

  b = cusp::pow(a,b);
  a = cusp::pow(b,ValueType(1.3));
  b = cusp::pow(ValueType(1.4),a);
  a = cusp::pow(b,4);
  b = cusp::sin(a);
  a = cusp::sinh(b);
  b = cusp::sqrt(a);
  a = cusp::tan(b);
  b = cusp::tanh(a);
  a = cusp::acos(b);
  b = cusp::asin(a);
  a = cusp::atan(b);
  return a;
}

template <typename ValueType>
__host__ __device__ cusp::complex<ValueType> test_complex_compilation_entry(){
  return test_complex_members<ValueType>() + test_complex_non_members<ValueType>();
}

template <typename ValueType>
__global__ void test_complex_compilation_kernel(cusp::complex<ValueType> * a){
  cusp::complex<ValueType> ret = test_complex_compilation_entry<ValueType>();
  *a = ret;
}

#if __CUDA_ARCH__ < 130
// Don't try to run the double precision tests if the compiled
// architecture doesn't support it 
template <>
__global__ void test_complex_compilation_kernel(cusp::complex<double> * a){
}
#endif

bool compiled_architecture_supports_double(void){
#if __CUDA_ARCH__ >= 130
  return true;
#else
  return false;
#endif
}

bool device_supports_double(void)
{
    int current_device = -1;
    cudaDeviceProp properties;

    cudaError_t error = cudaGetDevice(&current_device);
    if(error)
        throw thrust::system_error(error, thrust::cuda_category());

    if(current_device < 0)
        throw thrust::system_error(cudaErrorNoDevice, thrust::cuda_category());
    
    // the properties weren't found, ask the runtime to generate them
    error = cudaGetDeviceProperties(&properties, current_device);

    if(error)
      throw thrust::system_error(error, thrust::cuda_category());

    return properties.major >= 2 || (properties.major == 1 && properties.minor >= 3);
}

template <typename MemorySpace>
void TestComplexRealConversion()
{
  typedef float                Real;
  typedef cusp::complex<float> Complex;

  cusp::array1d<Real, MemorySpace>    real_values(4);
  cusp::array1d<Complex, MemorySpace> complex_values(4);

  // test real->complex conversion
  real_values[0] = 0;
  real_values[1] = 1;
  real_values[2] = 2;
  real_values[3] = 3;
  
  complex_values = real_values;

  ASSERT_EQUAL((Complex) complex_values[0], Complex(0,0));
  ASSERT_EQUAL((Complex) complex_values[1], Complex(1,0));
  ASSERT_EQUAL((Complex) complex_values[2], Complex(2,0));
  ASSERT_EQUAL((Complex) complex_values[3], Complex(3,0));
}
DECLARE_HOST_DEVICE_UNITTEST(TestComplexRealConversion);


template <typename ValueType>
struct TestComplexStdComplexConversion
{
  void operator()(void)
  {
    typedef std::complex<ValueType>  StdComplex;
    typedef cusp::complex<ValueType> CuspComplex;

    ASSERT_EQUAL(CuspComplex(StdComplex(0,0)), CuspComplex(0,0));
    ASSERT_EQUAL(CuspComplex(StdComplex(0,1)), CuspComplex(0,1));
    ASSERT_EQUAL(CuspComplex(StdComplex(1,0)), CuspComplex(1,0));
    ASSERT_EQUAL(CuspComplex(StdComplex(1,2)), CuspComplex(1,2));

    // can't test StdComplex(CuspComplex(...)) due to constructor ambiguity

    { StdComplex a(0,0); CuspComplex b = a;  ASSERT_EQUAL(b, CuspComplex(0,0)); }
    { StdComplex a(0,1); CuspComplex b = a;  ASSERT_EQUAL(b, CuspComplex(0,1)); }
    { StdComplex a(1,0); CuspComplex b = a;  ASSERT_EQUAL(b, CuspComplex(1,0)); }
    { StdComplex a(1,2); CuspComplex b = a;  ASSERT_EQUAL(b, CuspComplex(1,2)); }

    { CuspComplex a(0,0); StdComplex b = a;  ASSERT_EQUAL(b, StdComplex(0,0)); }
    { CuspComplex a(0,1); StdComplex b = a;  ASSERT_EQUAL(b, StdComplex(0,1)); }
    { CuspComplex a(1,0); StdComplex b = a;  ASSERT_EQUAL(b, StdComplex(1,0)); }
    { CuspComplex a(1,2); StdComplex b = a;  ASSERT_EQUAL(b, StdComplex(1,2)); }
  }
};
SimpleUnitTest<TestComplexStdComplexConversion, unittest::type_list<float,double> > TestComplexStdComplexConversionInstance;


template <typename ValueType>
void TestComplex()
{
  cusp::complex<ValueType> a;
  cusp::complex<ValueType> * d_a;  
  cudaMalloc(&d_a,sizeof(cusp::complex<ValueType>));
  test_complex_compilation_kernel<ValueType>
    <<<1,1>>>(d_a);
  cudaMemcpy(&a,d_a,sizeof(cusp::complex<ValueType>),cudaMemcpyDeviceToHost);
  std::complex<ValueType> b(a.real(),a.imag());
  a = test_complex_compilation_entry<ValueType>();
  // Don't check for equality between host and device code when the 
  // hardware device does not support double precision 
  if(is_same_type<ValueType,double>::result == false ||
     (device_supports_double() && compiled_architecture_supports_double())){
    ASSERT_COMPLEX_ALMOST_EQUAL(a,b);
  }
  // Test twice the unit circle 
  for(int i = 0;i < 32;i++){
    ValueType theta(ValueType(i*M_PI/8));
    compareWithStd<ValueType>(cusp::polar<ValueType>(ValueType(1),theta));
  }
}
DECLARE_NUMERIC_UNITTEST(TestComplex);