1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
from __future__ import division, print_function
##############################################################################
#
# Copyright (c) 2009-2016 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
__copyright__="""Copyright (c) 2009-2016 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""
############################################################FILE HEADER
# example05b.py
# Create either a 2D syncline or anticline model using pycad meshing
# tools. Then model steady state heat solution. Look at some line profiles.
#######################################################EXTERNAL MODULES
import matplotlib
matplotlib.use('agg') #It's just here for automated testing
from esys.pycad import * #domain constructor
from esys.pycad.gmsh import Design #Finite Element meshing package
import os #file path tool
from math import * # math package
from esys.escript import *
from esys.escript.unitsSI import *
from esys.escript.linearPDEs import LinearPDE
from esys.escript.pdetools import Projector
from cblib import toRegGrid, HAVE_NATGRID
import pylab as pl #Plotting package
try:
# This imports the rectangle domain function
from esys.finley import MakeDomain#Converter for escript
HAVE_FINLEY = True
except ImportError:
print("Finley module not available")
HAVE_FINLEY = False
########################################################MPI WORLD CHECK
if getMPISizeWorld() > 1:
import sys
print("This example will not run in an MPI world.")
sys.exit(0)
if not HAVE_NATGRID:
print("This example requires natgrid to be available to matplotlib")
if HAVE_FINLEY and HAVE_NATGRID:
#################################################ESTABLISHING VARIABLES
#set modal to 1 for a syncline or -1 for an anticline structural
#configuration
modal=-1
# the folder to put our outputs in, leave blank "" for script path -
# note this folder path must exist to work
save_path= os.path.join("data","example05")
mkDir(save_path)
################################################ESTABLISHING PARAMETERS
#Model Parameters
width=5000.0*m #width of model
depth=-6000.0*m #depth of model
Ttop=20*K # top temperature
qin=70*Milli*W/(m*m) # bottom heat influx
sspl=51 #number of discrete points in spline
dsp=width/(sspl-1) #dx of spline steps for width
dep_sp=2500.0*m #avg depth of spline
h_sp=1500.0*m #heigh of spline
orit=-1.0 #orientation of spline 1.0=>up -1.0=>down
####################################################DOMAIN CONSTRUCTION
# Domain Corners
p0=Point(0.0, 0.0, 0.0)
p1=Point(0.0, depth, 0.0)
p2=Point(width, depth, 0.0)
p3=Point(width, 0.0, 0.0)
# Generate Material Boundary
x=[ Point(i*dsp\
,-dep_sp+modal*orit*h_sp*cos(pi*i*dsp/dep_sp+pi))\
for i in range(0,sspl)\
]
mysp = Spline(*tuple(x))
# Start and end of material boundary.
x1=mysp.getStartPoint()
x2=mysp.getEndPoint()
# Create TOP BLOCK
# lines
tbl1=Line(p0,x1)
tbl2=mysp
tbl3=Line(x2,p3)
l30=Line(p3, p0)
# curve
tblockloop = CurveLoop(tbl1,tbl2,tbl3,l30)
# surface
tblock = PlaneSurface(tblockloop)
# Create BOTTOM BLOCK
# lines
bbl1=Line(x1,p1)
bbl3=Line(p2,x2)
bbl4=-mysp
l12=Line(p1, p2)
# curve
bblockloop = CurveLoop(bbl1,l12,bbl3,bbl4)
# surface
bblock = PlaneSurface(bblockloop)
################################################CREATE MESH FOR ESCRIPT
# Create a Design which can make the mesh
d=Design(dim=2, element_size=200)
# Add the subdomains and flux boundaries.
d.addItems(PropertySet("top",tblock),PropertySet("bottom",bblock),\
PropertySet("linebottom",l12))
# Create the geometry, mesh and Escript domain
d.setScriptFileName(os.path.join(save_path,"example05.geo"))
d.setMeshFileName(os.path.join(save_path,"example05.msh"))
domain=MakeDomain(d, optimizeLabeling=True)
print("Domain has been generated ...")
##############################################################SOLVE PDE
mypde=LinearPDE(domain)
mypde.getSolverOptions().setVerbosityOn()
mypde.setSymmetryOn()
kappa=Scalar(0,Function(domain))
kappa.setTaggedValue("top",2.0*W/m/K)
kappa.setTaggedValue("bottom",4.0*W/m/K)
mypde.setValue(A=kappa*kronecker(domain))
x=Solution(domain).getX()
mypde.setValue(q=whereZero(x[1]-sup(x[1])),r=Ttop)
qS=Scalar(0,FunctionOnBoundary(domain))
qS.setTaggedValue("linebottom",qin)
mypde.setValue(y=qS)
print("PDE has been generated ...")
###########################################################GET SOLUTION
T=mypde.getSolution()
print("PDE has been solved ...")
##################################################REGRIDDING & PLOTTING
xi, yi, zi = toRegGrid(T, nx=50, ny=50)
pl.matplotlib.pyplot.autumn()
pl.contourf(xi,yi,zi,10)
pl.xlabel("Horizontal Displacement (m)")
pl.ylabel("Depth (m)")
pl.savefig(os.path.join(save_path,"Tcontour.png"))
print("Solution has been plotted ...")
##########################################################VISUALISATION
# calculate gradient of solution for quiver plot
#Projector is used to smooth the data.
proj=Projector(domain)
#move data to a regular grid for plotting
xi,yi,zi = toRegGrid(T,200,200)
cut=int(len(xi)//2)
pl.clf()
pl.plot(zi[:,cut],yi)
pl.title("Temperature Depth Profile")
pl.xlabel("Temperature (K)")
pl.ylabel("Depth (m)")
pl.savefig(os.path.join(save_path,"tdp.png"))
pl.clf()
# Heat flow depth profile.
# grid the data.
qu=proj(-kappa*grad(T))
xiq,yiq,ziq = toRegGrid(qu[1],50,50)
cut=int(len(xiq)//2)
pl.plot(ziq[:,cut]*1000.,yiq)
pl.title("Vertical Heat Flow Depth Profile")
pl.xlabel("Heat Flow (mW/m^2)")
pl.ylabel("Depth (m)")
pl.savefig(os.path.join(save_path,"hf.png"))
pl.clf()
# Temperature Gradient Depth Profile at x[50]
zT=proj(-grad(T))
xt,yt,zt=toRegGrid(zT[1],200,200)
cut=int(len(xt)//2)
pl.plot(zt[:,cut]*1000.,yt)
pl.title("Vertical Temperature Gradient \n Depth Profile")
pl.xlabel("Temperature gradient (K/Km)")
pl.ylabel("Depth (m)")
pl.savefig(os.path.join(save_path,"tgdp.png"))
pl.clf()
# Thermal Conditions Depth Profile
xk,yk,zk = toRegGrid(proj(kappa),200,200)
cut=int(len(xk)//2)
pl.plot(zk[:,cut],yk)
pl.title("Thermal Conductivity Depth Profile")
pl.xlabel("Conductivity (W/K/m)")
pl.ylabel("Depth (m)")
pl.axis([1,5,-6000,0])
pl.savefig(os.path.join(save_path,"tcdp.png"))
pl.clf()
print("vertical profiles created ...")
|