1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
from __future__ import division
##############################################################################
#
# Copyright (c) 2003-2016 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
__copyright__="""Copyright (c) 2003-2016 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
# import tools
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
try:
from esys.dudley import Rectangle
HAVE_DUDLEY = True
except ImportError:
HAVE_DUDLEY = False
from esys.weipa import saveVTK
if not HAVE_DUDLEY:
print("Dudley module not available")
else:
# set dimensions
L0=1.;L1=1.
# bottom temperature:
T_bot=100
# location, size and value of heat source
xc=[0.3,0.4]; r=0.1; Qc=3000
# create domain
mydomain=Rectangle(l0=L0,l1=L1,n0=20,n1=20)
x=mydomain.getX()
k=1
# temperature for boundary condition
T_D=T_bot/L1*(L1-x[1])
# heat source
Q=Qc*whereNegative(length(x-xc)-r)
# create PDE:
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
# set coefficients:
mypde.setValue(A=k*kronecker(mydomain),Y=Q, r=T_D, \
q=whereZero(x[1])+whereZero(x[1]-L1))
# get temperature:
T=mypde.getSolution()
# write to file:
saveVTK("u.vtu",T=T)
|