File: Mapping.tex

package info (click to toggle)
python-escript 5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 87,772 kB
  • ctags: 49,550
  • sloc: python: 585,488; cpp: 133,173; ansic: 18,675; xml: 3,283; sh: 690; makefile: 215
file content (98 lines) | stat: -rw-r--r-- 3,910 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
\chapter{Mapping}\label{Chp:ref:mapping}

Mapping classes map a level set function $m$ as described in Chapter~\ref{Chp:ref:regularization}
onto a physical parameter such as density and susceptibility. 

\section{Density Map}\label{Chp:ref:mapping density}
For density we use the form 
\begin{equation}\label{EQU:MAP:1}
\rho =  \rho_{0} + \Delta \rho \cdot \left( \frac{z_0-x_2}{l_z} \right)^{\frac{\beta}{2}}  \cdot m 
\end{equation}  
where $\rho_{0}$ is the reference density, $\Delta \rho$ is the density scaling, $z_0$ an offset, $l_z$ vertical expansion
of the domain and $\beta$ is a suitable exponent. 

\begin{classdesc}{DensityMapping}{domain
        \optional{, z0=None}
        \optional{, rho0=0}
        \optional{, drho=$2750 \cdot kg \cdot m^{-3}$}
        \optional{, beta=2.}}
a linear density mapping including depth weighting. \member{domain} is the
domain of the inversion, \member{z0} reference depth in the depth weighting
factor, \member{drho} is the density scaling factor (by default the density of
granite is used) and \member{beta} is the exponent in the depth weighting factor.
If no reference depth \member{z0} is given no depth weighting is applied.
\member{rho0} is the reference density which may be a function of its location
in the domain. 
\end{classdesc}

\begin{methoddesc}[DensityMapping]{getValue}{m}
returns the density for level set function $m$
\end{methoddesc}

\begin{methoddesc}[DensityMapping]{getDerivative}{m}
return the derivative of density  with respect to the level set function.
\end{methoddesc}  

\begin{methoddesc}[DensityMapping]{getInverse}{p}
returns the value level set function $m$ for given density value $p$.
\end{methoddesc}


\section{Susceptibility Map}\label{Chp:ref:mapping susceptibility}
For the magnetic susceptibility $k$ the following mapping is used:
\begin{equation}\label{EQU:MAP:2}
k=  k_{0} + \Delta k \cdot \left( \frac{z_0-x_2}{l_z} \right)^{\frac{\beta}{2}}  \cdot m 
\end{equation}  
where $k_{0}$ is the reference density and $\Delta k$ is the density scaling.

\begin{classdesc}{SusceptibilityMapping}{domain
        \optional{, z0=None}
        \optional{, k0=0}
        \optional{, dk=1}
        \optional{, beta=2.}}
a linear susceptibility mapping including depth weighting.
\member{domain} is the domain of the inversion, \member{z0} reference depth in
the depth weighting factor, \member{dk} is the susceptibility scaling factor
(by default one is used) and \member{beta} is the exponent in the depth
weighting factor. If no reference depth \member{z0} is given no depth
weighting is applied.
\member{k0} is the reference susceptibility which may be a function of its
location in the domain. 
\end{classdesc}

\begin{methoddesc}[SusceptibilityMapping]{getValue}{m}
returns the susceptibility for level set function $m$
\end{methoddesc}

\begin{methoddesc}[SusceptibilityMapping]{getDerivative}{m}
return the derivative of susceptibility  with respect to the level set function.
\end{methoddesc}  

\begin{methoddesc}[SusceptibilityMapping]{getInverse}{p}
returns the value level set function $m$ for given susceptibility value $p$.
\end{methoddesc}


\section{General Mapping Class}
Users can define their own mapping $p=\Psi(m)$.
The following interface needs to be served

\begin{classdesc}{Mapping}{}
mapping of a level set function onto a physical parameter to be used by a
forward model.
\end{classdesc} 

\begin{methoddesc}[Mapping]{getValue}{m}
returns the result $\Psi(m)$ of the mapping for level set function $m$
\end{methoddesc}

\begin{methoddesc}[Mapping]{getDerivative}{m}
return the derivative $\frac{\partial \Psi}{\partial m}$ of the mapping with respect to the level set function for 
the level set function $m$.
\end{methoddesc}  

\begin{methoddesc}[Mapping]{getInverse}{p}
returns the value level set function $m$ for given value $p$ of the physical parameter, ie $p=\Psi(m)$.  
\end{methoddesc}