1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
\chapter{Mapping}\label{Chp:ref:mapping}
Mapping classes map a level set function $m$ as described in Chapter~\ref{Chp:ref:regularization}
onto a physical parameter such as density and susceptibility.
\section{Density Map}\label{Chp:ref:mapping density}
For density we use the form
\begin{equation}\label{EQU:MAP:1}
\rho = \rho_{0} + \Delta \rho \cdot \left( \frac{z_0-x_2}{l_z} \right)^{\frac{\beta}{2}} \cdot m
\end{equation}
where $\rho_{0}$ is the reference density, $\Delta \rho$ is the density scaling, $z_0$ an offset, $l_z$ vertical expansion
of the domain and $\beta$ is a suitable exponent.
\begin{classdesc}{DensityMapping}{domain
\optional{, z0=None}
\optional{, rho0=0}
\optional{, drho=$2750 \cdot kg \cdot m^{-3}$}
\optional{, beta=2.}}
a linear density mapping including depth weighting. \member{domain} is the
domain of the inversion, \member{z0} reference depth in the depth weighting
factor, \member{drho} is the density scaling factor (by default the density of
granite is used) and \member{beta} is the exponent in the depth weighting factor.
If no reference depth \member{z0} is given no depth weighting is applied.
\member{rho0} is the reference density which may be a function of its location
in the domain.
\end{classdesc}
\begin{methoddesc}[DensityMapping]{getValue}{m}
returns the density for level set function $m$
\end{methoddesc}
\begin{methoddesc}[DensityMapping]{getDerivative}{m}
return the derivative of density with respect to the level set function.
\end{methoddesc}
\begin{methoddesc}[DensityMapping]{getInverse}{p}
returns the value level set function $m$ for given density value $p$.
\end{methoddesc}
\section{Susceptibility Map}\label{Chp:ref:mapping susceptibility}
For the magnetic susceptibility $k$ the following mapping is used:
\begin{equation}\label{EQU:MAP:2}
k= k_{0} + \Delta k \cdot \left( \frac{z_0-x_2}{l_z} \right)^{\frac{\beta}{2}} \cdot m
\end{equation}
where $k_{0}$ is the reference density and $\Delta k$ is the density scaling.
\begin{classdesc}{SusceptibilityMapping}{domain
\optional{, z0=None}
\optional{, k0=0}
\optional{, dk=1}
\optional{, beta=2.}}
a linear susceptibility mapping including depth weighting.
\member{domain} is the domain of the inversion, \member{z0} reference depth in
the depth weighting factor, \member{dk} is the susceptibility scaling factor
(by default one is used) and \member{beta} is the exponent in the depth
weighting factor. If no reference depth \member{z0} is given no depth
weighting is applied.
\member{k0} is the reference susceptibility which may be a function of its
location in the domain.
\end{classdesc}
\begin{methoddesc}[SusceptibilityMapping]{getValue}{m}
returns the susceptibility for level set function $m$
\end{methoddesc}
\begin{methoddesc}[SusceptibilityMapping]{getDerivative}{m}
return the derivative of susceptibility with respect to the level set function.
\end{methoddesc}
\begin{methoddesc}[SusceptibilityMapping]{getInverse}{p}
returns the value level set function $m$ for given susceptibility value $p$.
\end{methoddesc}
\section{General Mapping Class}
Users can define their own mapping $p=\Psi(m)$.
The following interface needs to be served
\begin{classdesc}{Mapping}{}
mapping of a level set function onto a physical parameter to be used by a
forward model.
\end{classdesc}
\begin{methoddesc}[Mapping]{getValue}{m}
returns the result $\Psi(m)$ of the mapping for level set function $m$
\end{methoddesc}
\begin{methoddesc}[Mapping]{getDerivative}{m}
return the derivative $\frac{\partial \Psi}{\partial m}$ of the mapping with respect to the level set function for
the level set function $m$.
\end{methoddesc}
\begin{methoddesc}[Mapping]{getInverse}{p}
returns the value level set function $m$ for given value $p$ of the physical parameter, ie $p=\Psi(m)$.
\end{methoddesc}
|