File: ainv.cu

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (122 lines) | stat: -rw-r--r-- 4,093 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <cusp/precond/ainv.h>
#include <cusp/krylov/cg.h>
#include <cusp/gallery/poisson.h>
#include <cusp/csr_matrix.h>

#include <iostream>

template <typename Monitor>
void report_status(Monitor& monitor)
{
    if (monitor.converged())
    {
        std::cout << "Solver converged to " << monitor.tolerance() << " tolerance";
        std::cout << " after " << monitor.iteration_count() << " iterations";
        std::cout << " (" << monitor.residual_norm() << " final residual)" << std::endl;
    }
    else
    {
        std::cout << "Solver reached iteration limit " << monitor.iteration_limit() << " before converging";
        std::cout << " to " << monitor.tolerance() << " tolerance ";
        std::cout << " (" << monitor.residual_norm() << " final residual)" << std::endl;
    }
}

int main(void)
{
    typedef int                 IndexType;
    typedef float               ValueType;
    typedef cusp::device_memory MemorySpace;

    // create an empty sparse matrix structure
    cusp::coo_matrix<IndexType, ValueType, MemorySpace> A;

    // create 2D Poisson problem
    cusp::gallery::poisson5pt(A, 256, 256);

    // solve without preconditioning
    {
        std::cout << "\nSolving with no preconditioner" << std::endl;
    
        // allocate storage for solution (x) and right hand side (b)
        cusp::array1d<ValueType, MemorySpace> x(A.num_rows, 0);
        cusp::array1d<ValueType, MemorySpace> b(A.num_rows, 1);

        // set stopping criteria (iteration_limit = 1000, relative_tolerance = 1e-6)
        cusp::default_monitor<ValueType> monitor(b, 1000, 1e-6);
        
        // solve
        cusp::krylov::cg(A, x, b, monitor);

        // report status
        report_status(monitor);
    }

    // solve AINV preconditioner, using standard drop tolerance strategy 
    {
        std::cout << "\nSolving with scaled bridson preconditioner (drop tolerance .1)" << std::endl;
        
        // allocate storage for solution (x) and right hand side (b)
        cusp::array1d<ValueType, MemorySpace> x(A.num_rows, 0);
        cusp::array1d<ValueType, MemorySpace> b(A.num_rows, 1);

        // set stopping criteria (iteration_limit = 1000, relative_tolerance = 1e-6)
        cusp::default_monitor<ValueType> monitor(b, 1000, 1e-6);

        // setup preconditioner
        cusp::precond::scaled_bridson_ainv<ValueType, MemorySpace> M(A, .1);

        // solve
        cusp::krylov::cg(A, x, b, monitor, M);
        
        // report status
        report_status(monitor);
    }


    // solve AINV preconditioner, using static dropping strategy 
    {
        std::cout << "\nSolving with scaled bridson preconditioner (10 nonzeroes per row)" << std::endl;
        
        // allocate storage for solution (x) and right hand side (b)
        cusp::array1d<ValueType, MemorySpace> x(A.num_rows, 0);
        cusp::array1d<ValueType, MemorySpace> b(A.num_rows, 1);

        // set stopping criteria (iteration_limit = 1000, relative_tolerance = 1e-6)
        cusp::default_monitor<ValueType> monitor(b, 1000, 1e-6);

        // setup preconditioner
        cusp::precond::scaled_bridson_ainv<ValueType, MemorySpace> M(A, 0, 10);

        // solve
        cusp::krylov::cg(A, x, b, monitor, M);
        
        // report status
        report_status(monitor);
    }


    // solve AINV preconditioner, using novel dropping strategy 
    {
        std::cout << "\nSolving with AINV preconditioner (Lin strategy, p=2)" << std::endl;
        
        // allocate storage for solution (x) and right hand side (b)
        cusp::array1d<ValueType, MemorySpace> x(A.num_rows, 0);
        cusp::array1d<ValueType, MemorySpace> b(A.num_rows, 1);

        // set stopping criteria (iteration_limit = 1000, relative_tolerance = 1e-6)
        cusp::default_monitor<ValueType> monitor(b, 1000, 1e-6);

        // setup preconditioner
        cusp::precond::bridson_ainv<ValueType, MemorySpace> M(A, 0, -1, true, 2);

        // solve
        cusp::krylov::cg(A, x, b, monitor, M);
        
        // report status
        report_status(monitor);
    }

    return 0;
}