File: cr.cu

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (36 lines) | stat: -rw-r--r-- 1,055 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include <cusp/hyb_matrix.h>
#include <cusp/gallery/poisson.h>
#include <cusp/krylov/cr.h>

// where to perform the computation
typedef cusp::device_memory MemorySpace;

// which floating point type to use
typedef float ValueType;

int main(void)
{
    // create an empty sparse matrix structure (HYB format)
    cusp::hyb_matrix<int, ValueType, MemorySpace> A;

    // create a 2d Poisson problem on a 10x10 mesh
    cusp::gallery::poisson5pt(A, 10, 10);

    // allocate storage for solution (x) and right hand side (b)
    cusp::array1d<ValueType, MemorySpace> x(A.num_rows, 0);
    cusp::array1d<ValueType, MemorySpace> b(A.num_rows, 1);

    // set stopping criteria:
    //  iteration_limit    = 100
    //  relative_tolerance = 1e-3
    cusp::verbose_monitor<ValueType> monitor(b, 100, 1e-3);

    // set preconditioner (identity)
    cusp::identity_operator<ValueType, MemorySpace> M(A.num_rows, A.num_rows);

    // solve the linear system A * x = b with the Conjugate Gradient method
    cusp::krylov::cr(A, x, b, monitor, M);

    return 0;
}