1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
A collection of routines to use in cookbook examples.
Author: Antony Hallam antony.hallam@uqconnect.edu.au
"""
from esys.pycad import CurveLoop
# numpy for array handling
import numpy as np
# tools for dealing with PDEs - contains locator
from esys.escript.pdetools import Locator, Projector
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.weipa import saveVTK
import os
# routine to find consecutive coordinates of a loop in pycad
def getLoopCoords(loop):
# return all construction points of input
temp = loop.getConstructionPoints()
#create a numpy array for xyz components or construction points
coords = np.zeros([len(temp),3],float)
#place construction points in array
for i in range(0,len(temp)):
coords[i,:]=temp[i].getCoordinates()
#return a numpy array
return coords
##############################################################################
# subroutine: cbphones
# Allows us to record the values of a PDE at various
# specified locations in the model.
# Arguments:
# domain : domain of model
# U : Current time state displacement solution.
# phones : Geophone Locations
# dim : model dimesions
# savepath: where to output the data files local is default
##############################################################################
def cbphones(domain,U,phones,dim,savepath=""):
#find the number of geophones
nphones = len(phones)
u_pot = np.zeros([nphones,dim],float)
for i in range(0,nphones):
# define the location of the phone source
L=Locator(domain,np.array(phones[i]))
# find potential at point source.
temp = L.getValue(U)
for j in range(0,dim):
u_pot[i,j]=temp[j]
# open file to save displacement at point source
return u_pot
##############################################################################
# subroutine: wavesolver2d
# Can solve a generic 2D wave propagation problem with a
# point source in a homogeneous medium.
# Arguments:
# domain : domain to solve over
# h : time step
# tend : end time
# lam, mu : lames constants for domain
# rho : density of domain
# U0 : magnitude of source
# xc : source location in domain (Vector)
# savepath: where to output the data files
##############################################################################
def wavesolver2d(domain,h,tend,lam,mu,rho,U0,xc,savepath,output="vtk"):
from esys.escript.linearPDEs import LinearPDE
x=domain.getX()
# ... open new PDE ...
mypde=LinearPDE(domain)
#mypde.setSolverMethod(LinearPDE.LUMPING)
mypde.setSymmetryOn()
kmat = kronecker(domain)
mypde.setValue(D=kmat*rho)
# define small radius around point xc
# Lsup(x) returns the maximum value of the argument x
src_radius = 50#2*Lsup(domain.getSize())
print("src_radius = ",src_radius)
dunit=np.array([0.,1.]) # defines direction of point source
# ... set initial values ....
n=0
# initial value of displacement at point source is constant (U0=0.01)
# for first two time steps
u=U0*(cos(length(x-xc)*3.1415/src_radius)+1)*whereNegative(length(x-xc)-src_radius)*dunit
u_m1=u
t=0
u_pot = cbphones(domain,u,[[0,500],[250,500],[400,500]],2)
u_pc_x1 = u_pot[0,0]
u_pc_y1 = u_pot[0,1]
u_pc_x2 = u_pot[1,0]
u_pc_y2 = u_pot[1,1]
u_pc_x3 = u_pot[2,0]
u_pc_y3 = u_pot[2,1]
# open file to save displacement at point source
u_pc_data=open(os.path.join(savepath,'U_pc.out'),'w')
u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
# while t<tend:
while t<1.:
# ... get current stress ....
t=1.
##OLD WAY
break
g=grad(u)
stress=lam*trace(g)*kmat+mu*(g+transpose(g))
### ... get new acceleration ....
#mypde.setValue(X=-stress)
#a=mypde.getSolution()
### ... get new displacement ...
#u_p1=2*u-u_m1+h*h*a
###NEW WAY
mypde.setValue(X=-stress*(h*h),Y=(rho*2*u-rho*u_m1))
u_p1 = mypde.getSolution()
# ... shift displacements ....
u_m1=u
u=u_p1
#stress =
t+=h
n+=1
print(n,"-th time step t ",t)
u_pot = cbphones(domain,u,[[300.,200.],[500.,200.],[750.,200.]],2)
# print "u at point charge=",u_pc
u_pc_x1 = u_pot[0,0]
u_pc_y1 = u_pot[0,1]
u_pc_x2 = u_pot[1,0]
u_pc_y2 = u_pot[1,1]
u_pc_x3 = u_pot[2,0]
u_pc_y3 = u_pot[2,1]
# save displacements at point source to file for t > 0
u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
# ... save current acceleration in units of gravity and displacements
#saveVTK(os.path.join(savepath,"usoln.%i.vtu"%n),acceleration=length(a)/9.81,
#displacement = length(u), tensor = stress, Ux = u[0] )
if output == "vtk":
saveVTK(os.path.join(savepath,"tonysol.%i.vtu"%n),output1 = length(u),tensor=stress)
else:
quT=qu.toListOfTuples()
#Projector is used to smooth the data.
proj=Projector(mymesh)
smthT=proj(T)
#move data to a regular grid for plotting
xi,yi,zi = toRegGrid(smthT,mymesh,200,200,width,depth)
# contour the gridded data,
# select colour
pl.matplotlib.pyplot.autumn()
pl.clf()
# contour temperature
CS = pl.contour(xi,yi,zi,5,linewidths=0.5,colors='k')
# labels and formatting
pl.clabel(CS, inline=1, fontsize=8)
pl.title("Heat Refraction across a clinal structure.")
pl.xlabel("Horizontal Displacement (m)")
pl.ylabel("Depth (m)")
pl.legend()
if getMPIRankWorld() == 0: #check for MPI processing
pl.savefig(os.path.join(saved_path,"heatrefraction001_cont.png"))
u_pc_data.close()
##############################################################################
# subroutine: wavesolver2d
# Can solve a generic 2D wave propagation problem with a
# point source in a homogeneous medium with friction.
# Arguments:
# domain : domain to solve over
# h : time step
# tend : end time
# lam, mu : lames constants for domain
# rho : density of domain
# U0 : magnitude of source
# xc : source location in domain (Vector)
# savepath: where to output the data files
##############################################################################
def wavesolver2df(domain,h,tend,lam,mu,rho,U0,xc,savepath):
x=domain.getX()
# ... open new PDE ...
mypde=LinearPDE(domain)
#mypde.setSolverMethod(LinearPDE.LUMPING)
mypde.setSymmetryOn()
kmat = kronecker(domain)
mypde.setValue(D=kmat)
b=0.9
# define small radius around point xc
# Lsup(x) returns the maximum value of the argument x
src_radius = 50#2*Lsup(domain.getSize())
print("src_radius = ",src_radius)
dunit=np.array([0.,1.]) # defines direction of point source
# ... set initial values ....
n=0
# initial value of displacement at point source is constant (U0=0.01)
# for first two time steps
u=U0*(cos(length(x-xc)*3.1415/src_radius)+1)*whereNegative(length(x-xc)-src_radius)*dunit
u_m1=u
t=0
u_pot = cbphones(domain,u,[[0,500],[250,500],[400,500]],2)
u_pc_x1 = u_pot[0,0]
u_pc_y1 = u_pot[0,1]
u_pc_x2 = u_pot[1,0]
u_pc_y2 = u_pot[1,1]
u_pc_x3 = u_pot[2,0]
u_pc_y3 = u_pot[2,1]
# open file to save displacement at point source
u_pc_data=open(os.path.join(savepath,'U_pc.out'),'w')
u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
while t<tend:
# ... get current stress ....
##OLD WAY
g=grad(u)
stress=lam*trace(g)*kmat+mu*(g+transpose(g))
### ... get new acceleration ....
#mypde.setValue(X=-stress)
#a=mypde.getSolution()
### ... get new displacement ...
#u_p1=2*u-u_m1+h*h*a
###NEW WAY
y = ((rho/(-rho-b*h))*(u_m1-2*u))+(((b*h)/(-rho-(b*h)))*-u)
mypde.setValue(X=-stress*((h*h)/(-rho-h*b)),Y=y)
u_p1 = mypde.getSolution()
# ... shift displacements ....
u_m1=u
u=u_p1
#stress =
t+=h
n+=1
print(n,"-th time step t ",t)
u_pot = cbphones(domain,u,[[300.,200.],[500.,200.],[750.,200.]],2)
# print "u at point charge=",u_pc
u_pc_x1 = u_pot[0,0]
u_pc_y1 = u_pot[0,1]
u_pc_x2 = u_pot[1,0]
u_pc_y2 = u_pot[1,1]
u_pc_x3 = u_pot[2,0]
u_pc_y3 = u_pot[2,1]
# save displacements at point source to file for t > 0
u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
# ... save current acceleration in units of gravity and displacements
#saveVTK(os.path.join(savepath,"usoln.%i.vtu"%n),acceleration=length(a)/9.81,
#displacement = length(u), tensor = stress, Ux = u[0] )
saveVTK(os.path.join(savepath,"tonysol.%i.vtu"%n),output1 = length(u),tensor=stress)
u_pc_data.close()
|