1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
# You can shorten the execution time by reducing variable tend from 60 to 0.5
# Antony Hallam
# Acoustic Wave Equation Simulation
# Importing all the necessary modules required.
import matplotlib
matplotlib.use('agg') #It's just here for automated testing
import os
import sys
import numpy as np
import pylab as pl
import matplotlib.cm as cm
from esys.escript import *
# smoothing operator
from esys.escript.pdetools import Projector
from esys.finley import Rectangle
from esys.weipa import saveVTK
from cblib1 import wavesolver2d
# Establish a save path.
savepath = "data/wavesolver2d009mpltestABCnolump0_0006"
mkDir(savepath)
#Geometric and material property related variables.
mx = 1000. # model lenght
my = 1000. # model width
ndx = 200 # steps in x direction
ndy = 200 # steps in y direction
xstep=mx/ndx
ystep=my/ndy
lam=3.462e9 #lames constant
mu=3.462e9 #bulk modulus
rho=1154. #density
# Time related variables.
tend=0.5 #end time
#calculating )the timestep
h=(1./5.)*sqrt(rho/(lam+2*mu))*(mx/ndx)
#Check to make sure number of time steps is not too large.
print("Time step size= ",h, "Expected number of outputs= ",tend/h)
#uncomment the following lines to give the user a chance to stop
#proceeder = raw_input("Is this ok?(y/n)")
#Exit if user thinks too many outputs.
#if proceeder == "n":
# sys.exit()
U0=0.01 # amplitude of point source
# spherical source at middle of bottom face
xc=[500,500]
mydomain=Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy)
#wavesolver2d(mydomain,h,tend,lam,mu,rho,U0,xc,savepath,output="mpl")
domain=mydomain
output="mpl"
from esys.escript.linearPDEs import LinearPDE, SolverOptions
x=domain.getX()
## boundary conditions
bleft=xstep*50.
bright=mx-(xstep*50.)
bbot=my-(ystep*50.)
btop=ystep*50.
left=x[0]-bleft
right=x[0]-bright
bottom=x[1]-bbot
top=x[1]-btop
decay=0.0006
fleft=exp(-1.0*(decay*(bleft-x[0]))**2)
fright=exp(-1.0*(decay*(x[0]-bright))**2)
fbottom=exp(-1.0*(decay*(x[1]-bbot))**2)
ftop=exp(-1.0*(decay*(btop-x[1]))**2)
abcleft=fleft*whereNegative(left)
abcright=fright*wherePositive(right)
abcbottom=fbottom*wherePositive(bottom)
abctop=ftop*whereNegative(top)
abcleft=abcleft+whereZero(abcleft)
abcright=abcright+whereZero(abcright)
abcbottom=abcbottom+whereZero(abcbottom)
abctop=abctop+whereZero(abctop)
abc=abcleft*abcright*abcbottom*abctop
#~ fleftT=fleft.toListOfTuples()
#~ fleftT=np.reshape(fleftT,(ndx+1,ndy+1))
#~ pl.imshow(fleftT)
#~ pl.colorbar()
#~ pl.savefig("fleftT.png")
#~
#~ frightT=fright.toListOfTuples()
#~ frightT=np.reshape(frightT,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(frightT)
#~ pl.colorbar()
#~ pl.savefig("frightT.png")
#~
#~ fbottomT=fbottom.toListOfTuples()
#~ fbottomT=np.reshape(fbottomT,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(fbottomT)
#~ pl.colorbar()
#~ pl.savefig("fbottomT.png")
#~
#~ #tester=fright*wherePositive(right)
#~ tester=fleft*whereNegative(left)
#~ tester=tester.toListOfTuples()
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester1.png")
#~
#~ tester=fright*wherePositive(right)
#~ tester=tester.toListOfTuples()
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester2.png")
#~
#~ tester=fbottom*wherePositive(bottom)
#~ tester=tester.toListOfTuples()
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester3.png")
# ... open new PDE ...
mypde=LinearPDE(domain)
print(mypde.isUsingLumping())
print(mypde.getSolverOptions())
#mypde.getSolverOptions().setSolverMethod(SolverOptions.LUMPING)
mypde.setSymmetryOn()
kmat = kronecker(domain)
mypde.setValue(D=kmat*rho)
# define small radius around point xc
# Lsup(x) returns the maximum value of the argument x
src_radius = 50#2*Lsup(domain.getSize())
print("src_radius = ",src_radius)
dunit=np.array([0.,1.]) # defines direction of point source
#~ dunit=(x-xc)
#~ absrc=length(dunit)
#~ dunit=dunit/maximum(absrc,1e-10)
# ... set initial values ....
n=0
# initial value of displacement at point source is constant (U0=0.01)
# for first two time steps
u=U0*(cos(length(x-xc)*3.1415/src_radius)+1)*whereNegative(length(x-xc)-src_radius)*dunit
#u=whereNegative(length(x-xc)-src_radius)*dunit
maxi=0.02
print(u)
u_m1=u
t=0
#~ u_pot = cbphones(domain,u,[[0,500],[250,500],[400,500]],2)
#~ u_pc_x1 = u_pot[0,0]
#~ u_pc_y1 = u_pot[0,1]
#~ u_pc_x2 = u_pot[1,0]
#~ u_pc_y2 = u_pot[1,1]
#~ u_pc_x3 = u_pot[2,0]
#~ u_pc_y3 = u_pot[2,1]
#~
#~ # open file to save displacement at point source
#~ u_pc_data=open(os.path.join(savepath,'U_pc.out'),'w')
#~ u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
while t<tend:
# ... get current stress ....
# t=1.
##OLD WAY
g=grad(u)
stress=lam*trace(g)*kmat+mu*(g+transpose(g))
### ... get new acceleration ....
#mypde.setValue(X=-stress)
#a=mypde.getSolution()
### ... get new displacement ...
#u_p1=2*u-u_m1+h*h*a
###NEW WAY
mypde.setValue(X=-stress*(h*h),Y=(rho*2*u-rho*u_m1))
u_p1 = mypde.getSolution()
# ... shift displacements ....
u_m1=u
u=u_p1*abc
#stress =
t+=h
n+=1
print(n,"-th time step t ",t)
#~ u_pot = cbphones(domain,u,[[300.,200.],[500.,200.],[750.,200.]],2)
#~
#~ # print "u at point charge=",u_pc
#~ u_pc_x1 = u_pot[0,0]
#~ u_pc_y1 = u_pot[0,1]
#~ u_pc_x2 = u_pot[1,0]
#~ u_pc_y2 = u_pot[1,1]
#~ u_pc_x3 = u_pot[2,0]
#~ u_pc_y3 = u_pot[2,1]
# save displacements at point source to file for t > 0
#~ u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
# ... save current acceleration in units of gravity and displacements
#saveVTK(os.path.join(savepath,"usoln.%i.vtu"%n),acceleration=length(a)/9.81,
#displacement = length(u), tensor = stress, Ux = u[0] )
if output == "vtk":
saveVTK(os.path.join(savepath,"tonysol.%i.vtu"%n),output1 = length(u),tensor=stress)
if output == "mpl":
uT=np.array(u.toListOfTuples())
uT=np.reshape(uT,(ndx+1,ndy+1,2))
uTz=uT[:,:,1]+uT[:,:,0]
uTz=np.transpose(uTz)
pl.clf()
# plot wave
uTz[0,0]=maxi
uTz[0,1]=-maxi
CS = pl.imshow(uTz,cmap=cm.viridis)
pl.colorbar()
# labels and formatting
pl.title("Wave Equation Cookbook Example ABC.")
pl.xlabel("Horizontal Displacement (m)")
pl.ylabel("Depth (m)")
if getMPIRankWorld() == 0: #check for MPI processing
pl.savefig(os.path.join(savepath,"ws04mpl%05d.png"%n))
#~ u_pc_data.close()
#~ os.system("mencoder mf://"+savepath+"/*.png -mf type=png:\
#~ w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o \
#~ wsmpl.avi")
#mencoder mf://*.png -mf type=png:\w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o wsmpl.avi
|