1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
__copyright__ = "Copyright (c) 2020 by University of Queensland http://www.uq.edu.au"
__license__ = "Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0"
__credits__ = "Lutz Gross, Andrea Codd"
"""
Simple gravity Anomaly code that uses class GravityModel in gravityModels.py
The domain is made using finley Brick creating a structured grid.
Inputs are
gridline spacing,
number of elements in the x, y, and z directions,
height of the data above ground,
background magnetic field,
and assumed susceptibility.
class GravityModel(domain) sets up the PDE and domain
This example is for a model with zero density apart from a small sphere centre c and radius R that has the assumed density.
The output from this code is a silo file containing density, and vertical gravity, gz.
"""
# Import required modules
from esys.escript import *
from esys.finley import Brick
from esys.weipa import saveSilo
from esys.downunder.apps import GravityModel
import numpy as np
# Set Parameters
dx = 6 # grid line spacing in [m]
NEx = 200 # number of nodes in the x direction
NEy = 200 # number of nodes in the y direction
NEz = 200 # number of nodes in the z direction
H0 = 600 # height [m] of transect above bottom of domain (will be locked to grid)
dens = 1000 # assumed density kg/m^3
Lx = dx*NEx
Ly = dx*NEy
Lz = dx*NEz
print("domain dimensions = [%dm x %dm x %dm]"%(Lx,Ly,Lz))
print("grid = [%d x %d x %d]"%(NEx, NEy, NEz))
# Create domain
domain=Brick(n0=NEx, n1=NEy, n2=NEz, l0=Lx, l1=Ly, l2=Lz)
# Define model using class GravityModel
# Assumes zero Dirichlet BC at top surface
model=GravityModel(domain)
# Define density
Z0=100 # vertical position of circle below transect [m]
c=[Lx/2.,Ly/2., H0-Z0] # circle center
R=50. # radius
x=domain.getX()
d=length(x-c)
sphereDens=dens*whereNegative(d-R) # 0 for d>R and 1 for d<R
model.setDensity(sphereDens)
# Solve for gravity field anomaly
gp=model.getGravityPotential()
print(gp)
g_vect = model.getGravityVector()
gz = model.getzGravity()
rho=model.getDensity()
print(rho)
saveSilo("grav", gz=gz, rho=rho ,allg=g_vect)
|