File: gravmag_wgs84_nodriver.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (142 lines) | stat: -rw-r--r-- 4,904 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
##############################################################################
#
# Copyright (c) 2012-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function

"""
Advanced 3D gravity/magnetic joint inversion example without using any
inversion drivers
"""

__copyright__="""Copyright (c) 2012-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

# Import required modules
import numpy as np
from esys.downunder import *
from esys.escript import unitsSI as U
from esys.escript import *
from esys.weipa import *

# Set parameters
MAGNETIC_DATASET = 'data/MagneticSmall.nc'
MAG_UNITS = U.Nano * U.V * U.sec / (U.m**2)
GRAVITY_DATASET = 'data/GravitySmall.nc'
GRAV_UNITS = 1e-6 * U.m/(U.sec**2)
# background magnetic field components (B_East, B_North, B_Vertical)
B_b = [2201.*U.Nano*U.Tesla, 31232.*U.Nano*U.Tesla, -41405.*U.Nano*U.Tesla]

thickness = 40. * U.km # below surface
l_air = 6. * U.km      # above surface
n_cells_v = 25         # number of cells in vertical direction

# apply 20% padding
PAD_X = 0.2
PAD_Y = 0.2

MU_GRAVITY = 10.
MU_MAGNETIC = 0.1

COORDINATES=WGS84ReferenceSystem()



def work():
  # read data:
  source_g=NetCdfData(NetCdfData.GRAVITY, GRAVITY_DATASET, scale_factor=GRAV_UNITS, reference_system=COORDINATES)
  source_m=NetCdfData(NetCdfData.MAGNETIC, MAGNETIC_DATASET, scale_factor=MAG_UNITS, reference_system=COORDINATES)

  # create domain:
  db=DomainBuilder(dim=3, reference_system=COORDINATES)
  db.addSource(source_g)
  db.addSource(source_m)
  db.setVerticalExtents(depth=thickness, air_layer=l_air, num_cells=n_cells_v)
  db.setFractionalPadding(pad_x=PAD_X, pad_y=PAD_Y)
  db.fixDensityBelow(depth=thickness)
  db.fixSusceptibilityBelow(depth=thickness)

  dom=db.getDomain()
  DIM=dom.getDim()

  # create mappings with standard parameters
  rho_mapping=DensityMapping(dom)
  k_mapping=SusceptibilityMapping(dom)

  # create regularization with two level set functions:
  reg_mask=Data(0.,(2,), Solution(dom))
  reg_mask[0] = db.getSetDensityMask()        # mask for locations where m[0]~rho is known
  reg_mask[1] = db.getSetSusceptibilityMask() # mask for locations where m[0]~k is known
  regularization=Regularization(dom, numLevelSets=2,
                               w1=np.ones((2,DIM)), # consider gradient terms
                               wc=[[0,1],[0,0]],    # and cross-gradient term
                               coordinates=COORDINATES,
                               location_of_set_m=reg_mask)

  # create forward model for gravity
  # get data with deviation
  g,sigma_g=db.getGravitySurveys()[0]
  # turn the scalars into vectors (vertical direction)
  d=kronecker(DIM)[DIM-1]
  w=safeDiv(1., sigma_g)

  gravity_model=GravityModel(dom, w*d, g*d, coordinates=COORDINATES)
  gravity_model.rescaleWeights(rho_scale=rho_mapping.getTypicalDerivative())

  # create forward model for magnetic
  d=normalize(np.array(B_b)) # direction of measurement
  B,sigma_B=db.getMagneticSurveys()[0]
  w=safeDiv(1., sigma_B)

  magnetic_model=MagneticModel(dom, w*d, B*d, B_b, coordinates=COORDINATES)
  # or
  # magnetic_model=SelfDemagnetizationModel(dom, w*d, B*d, B_b, coordinates=COORDINATES)
  magnetic_model.rescaleWeights(k_scale=k_mapping.getTypicalDerivative())


  # finally we can set up the cost function:
  cf=InversionCostFunction(regularization,
             ((rho_mapping,0), (k_mapping, 1)),
             ((gravity_model,0), (magnetic_model,1)) )

  cf.setTradeOffFactorsModels([MU_GRAVITY, MU_MAGNETIC])

  # sun solver:
  solver=MinimizerLBFGS()
  solver.setCostFunction(cf)
  solver.setTolerance(1e-4)
  solver.setMaxIterations(50)
  solver.run(Data(0.,(2,),Solution(dom)))
  m=solver.getResult()
  density, susceptibility = cf.getProperties(m)


  # write everything to file:
  saveSilo("result_gravmag.silo",
         density=density, susceptability=susceptibility,
         g_data=g, sigma_g=sigma_g, B_data=B, sigma_B=sigma_B)
  saveVTK("result_gravmag.vtu",
         density=density, susceptability=susceptibility,
         g_data=g, sigma_g=sigma_g, B_data=B, sigma_B=sigma_B)

  print("All done. Have a nice day!")

if 'NetCdfData' in dir():
  work()
else:
  print("This example requires scipy's netcdf support which does not appear to be installed.")