1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
##############################################################################
#
# Copyright (c) 2012-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
"""
Advanced 3D gravity/magnetic joint inversion example without using any
inversion drivers
"""
__copyright__="""Copyright (c) 2012-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
# Import required modules
import numpy as np
from esys.downunder import *
from esys.escript import unitsSI as U
from esys.escript import *
from esys.weipa import *
# Set parameters
MAGNETIC_DATASET = 'data/MagneticSmall.nc'
MAG_UNITS = U.Nano * U.V * U.sec / (U.m**2)
GRAVITY_DATASET = 'data/GravitySmall.nc'
GRAV_UNITS = 1e-6 * U.m/(U.sec**2)
# background magnetic field components (B_East, B_North, B_Vertical)
B_b = [2201.*U.Nano*U.Tesla, 31232.*U.Nano*U.Tesla, -41405.*U.Nano*U.Tesla]
thickness = 40. * U.km # below surface
l_air = 6. * U.km # above surface
n_cells_v = 25 # number of cells in vertical direction
# apply 20% padding
PAD_X = 0.2
PAD_Y = 0.2
MU_GRAVITY = 10.
MU_MAGNETIC = 0.1
COORDINATES=WGS84ReferenceSystem()
def work():
# read data:
source_g=NetCdfData(NetCdfData.GRAVITY, GRAVITY_DATASET, scale_factor=GRAV_UNITS, reference_system=COORDINATES)
source_m=NetCdfData(NetCdfData.MAGNETIC, MAGNETIC_DATASET, scale_factor=MAG_UNITS, reference_system=COORDINATES)
# create domain:
db=DomainBuilder(dim=3, reference_system=COORDINATES)
db.addSource(source_g)
db.addSource(source_m)
db.setVerticalExtents(depth=thickness, air_layer=l_air, num_cells=n_cells_v)
db.setFractionalPadding(pad_x=PAD_X, pad_y=PAD_Y)
db.fixDensityBelow(depth=thickness)
db.fixSusceptibilityBelow(depth=thickness)
dom=db.getDomain()
DIM=dom.getDim()
# create mappings with standard parameters
rho_mapping=DensityMapping(dom)
k_mapping=SusceptibilityMapping(dom)
# create regularization with two level set functions:
reg_mask=Data(0.,(2,), Solution(dom))
reg_mask[0] = db.getSetDensityMask() # mask for locations where m[0]~rho is known
reg_mask[1] = db.getSetSusceptibilityMask() # mask for locations where m[0]~k is known
regularization=Regularization(dom, numLevelSets=2,
w1=np.ones((2,DIM)), # consider gradient terms
wc=[[0,1],[0,0]], # and cross-gradient term
coordinates=COORDINATES,
location_of_set_m=reg_mask)
# create forward model for gravity
# get data with deviation
g,sigma_g=db.getGravitySurveys()[0]
# turn the scalars into vectors (vertical direction)
d=kronecker(DIM)[DIM-1]
w=safeDiv(1., sigma_g)
gravity_model=GravityModel(dom, w*d, g*d, coordinates=COORDINATES)
gravity_model.rescaleWeights(rho_scale=rho_mapping.getTypicalDerivative())
# create forward model for magnetic
d=normalize(np.array(B_b)) # direction of measurement
B,sigma_B=db.getMagneticSurveys()[0]
w=safeDiv(1., sigma_B)
magnetic_model=MagneticModel(dom, w*d, B*d, B_b, coordinates=COORDINATES)
# or
# magnetic_model=SelfDemagnetizationModel(dom, w*d, B*d, B_b, coordinates=COORDINATES)
magnetic_model.rescaleWeights(k_scale=k_mapping.getTypicalDerivative())
# finally we can set up the cost function:
cf=InversionCostFunction(regularization,
((rho_mapping,0), (k_mapping, 1)),
((gravity_model,0), (magnetic_model,1)) )
cf.setTradeOffFactorsModels([MU_GRAVITY, MU_MAGNETIC])
# sun solver:
solver=MinimizerLBFGS()
solver.setCostFunction(cf)
solver.setTolerance(1e-4)
solver.setMaxIterations(50)
solver.run(Data(0.,(2,),Solution(dom)))
m=solver.getResult()
density, susceptibility = cf.getProperties(m)
# write everything to file:
saveSilo("result_gravmag.silo",
density=density, susceptability=susceptibility,
g_data=g, sigma_g=sigma_g, B_data=B, sigma_B=sigma_B)
saveVTK("result_gravmag.vtu",
density=density, susceptability=susceptibility,
g_data=g, sigma_g=sigma_g, B_data=B, sigma_B=sigma_B)
print("All done. Have a nice day!")
if 'NetCdfData' in dir():
work()
else:
print("This example requires scipy's netcdf support which does not appear to be installed.")
|