1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
##############################################################################
#
# Copyright (c) 2009-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""3D magnetic inversion example using netCDF data"""
from __future__ import division, print_function
__copyright__="""Copyright (c) 2009-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
# Import required modules
from esys.downunder import *
from esys.weipa import *
from esys.escript import unitsSI as U
from esys.escript import saveDataCSV, hasFeature
# Set parameters
DATASET = 'data/MagneticSmall.nc'
DATA_UNITS = U.Nano * U.Tesla
PAD_X = 0.2
PAD_Y = 0.2
thickness = 40. * U.km
l_air = 6. * U.km
n_cells_v = 25
MU = 0.1
# background magnetic field components (B_East, B_North, B_Vertical)
B_b = [2201.*U.Nano*U.Tesla, 31232.*U.Nano*U.Tesla, -41405.*U.Nano*U.Tesla]
COORDINATES=CartesianReferenceSystem()
#COORDINATES=WGS84ReferenceSystem()
def work():
# Setup and run the inversion
source=NetCdfData(NetCdfData.MAGNETIC, DATASET, scale_factor=DATA_UNITS, reference_system=COORDINATES)
db=DomainBuilder(dim=3, reference_system=COORDINATES)
db.addSource(source)
db.setVerticalExtents(depth=thickness, air_layer=l_air, num_cells=n_cells_v)
db.setFractionalPadding(pad_x=PAD_X, pad_y=PAD_Y)
db.setBackgroundMagneticFluxDensity(B_b)
db.fixSusceptibilityBelow(depth=thickness)
inv=MagneticInversion(self_demagnetization=True)
inv.setSolverTolerance(1e-4)
inv.setSolverMaxIterations(100)
inv.fixMagneticPotentialAtBottom(False)
inv.setup(db)
inv.getCostFunction().setTradeOffFactorsModels(MU)
susceptibility = inv.run()
print("susceptibility = %s"%susceptibility)
B, w = db.getMagneticSurveys()[0]
if saveSilo("result_magnetic.silo", susceptibility=susceptibility, magnetic_anomaly=B, magnetic_weight=w):
print("Results saved in result_magnetic.silo")
else:
print("Failed to save result_magnetic.silo. Possibly no Silo support.")
saveVTK("result_magnetic.vtu", susceptibility=susceptibility, magnetic_anomaly=B, magnetic_weight=w)
print("Results saved in result_magnetic.vtu")
saveDataCSV("result_magnetic.csv", susceptibility=susceptibility, x=susceptibility.getFunctionSpace().getX())
print("Results saved in result_magnetic.csv")
print("All done. Have a nice day!")
try:
import pyproj
HAVE_PYPROJ = True
except ImportError:
HAVE_PYPROJ = False
try:
import esys.ripley
HAVE_RIPLEY = True
except ImportError:
HAVE_RIPLEY = False
if not hasFeature('netcdf'):
print("This example requires scipy's netcdf support which does not appear to be installed.")
elif not HAVE_RIPLEY:
print("Ripley module required but not available")
elif not HAVE_PYPROJ:
print("This example requires pyproj to be installed.")
else:
work()
|