1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import *
from esys.escript import unitsSI as U
from esys.escript.pdetools import Locator
try:
from esys.weipa import saveSilo
HAVE_SILO = True
except:
HAVE_SILO = False
from esys.downunder import Ricker, TTIWave, SimpleSEGYWriter
from math import ceil
import time
try:
from esys.speckley import Rectangle
HAVE_SPECKLEY=True
except ImportError:
HAVE_SPECKLEY=False
if HAVE_SPECKLEY and HAVE_SILO:
# these are the layers from the top down
layers = [ 400*U.m , 100*U.m , 1.*U.km, ]
v_P= [ 2.86* U.km/U.sec , 1.5 * U.km/U.sec, 2.86 * U.km/U.sec ]
v_S= [ 1.79 * U.km/U.sec , 0.7* U.km/U.sec, 1.8*U.km/U.sec ]
eps = [ 0. , 0.5, 0.1 ]
delta= [ 0. , 0.5 , 0. ]
tilt= [ 0. , 0. , 0. ]
rho= [ 2000 * U.kg/U.m**3 , 2000 * U.kg/U.m**3, 2000 * U.kg/U.m**3 ]
#
# other input:
#
t_end=0.008*U.sec # only this low for testing purposes
frq=10.*U.Hz # dominant frequnce in the Ricker (maximum frequence ~ 2 * frq)
sampling_interval=4*U.msec # sampling interval
ne_z=None # number of elements in vertical direction, if none it is guessed
n_out = 5 # a silo file is created every n_out's sample
absorption_zone=100*U.m # absorbtion zone to be added in horizontal direction to the area covered by receiver line
# and subtracted from the lowest layer.
# defines the receiver line
rangeRcv=800*U.m # width of the receiver line
numRcvPerLine=101 # total number of receivers
src_id=numRcvPerLine//2 # location of source in crossing array lines with in 0..numRcvInLine
lumping = True
src_dir=[0,1]
# domain dimension
width_x=rangeRcv + 4*absorption_zone
depth=sum(layers)
if ne_z is None:
ne_z=int(ceil(depth*(2*frq)/min(v_P)))
if getMPISizeWorld() > 10:
ne_z = 2*ne_z-1
ne_x=int(ceil(ne_z*width_x/depth))
#
# create receiver array
#
receiver_line=[2*absorption_zone + i * (rangeRcv//(numRcvPerLine-1)) for i in range(numRcvPerLine) ]
#
# set source location with tag "source""
#
src_tags=["source"]
src_locations = [ (receiver_line[src_id], depth)]
srcloc=(receiver_line[src_id], 0.)
#
# output
#
print("%s"%(time.asctime(),))
print("ne_x = %s"%(ne_x,))
print("ne_z = %s"%(ne_z,))
print("width = %s m"%(width_x,))
print("depth = %s m"%(depth, ))
print("absorption_zone = %s m"%(absorption_zone, ))
print("sampling interval = %s ms"%(sampling_interval/U.msec,))
print("t_end = %s sec"%(t_end,))
print("ricker dominant freqency = %s Hz"%(frq,))
print("length of receiver line = %s ms"%(rangeRcv,))
print("number of receivers = %s"%(numRcvPerLine,))
print("first receiver location = %s m"%(receiver_line[0],))
print("last receiver location = %s m"%(receiver_line[-1],))
print("source location = %s m"%(src_locations[0][0],))
print("source orientation = %s"%(src_dir,))
print("matrix lumping = %s"%(lumping,))
print("Layer\tV_p\tV_s\teps\tdelta\ttilt\trho")
for i in range(len(layers)):
print("%s\t%s\t%s\t%s\t%s\t%s\t%s"%( layers[i], v_P[i], v_S[i], eps[i], delta[i], tilt[i], rho[i]))
#
# create domain:
#
order = 5
domain=Rectangle(order, ne_x,ne_z, l0=width_x, l1=depth,
diracPoints=src_locations, diracTags=src_tags, d0=getMPISizeWorld())
#
# create the wavelet:
#
wl=Ricker(frq)
#
#======================================================================
#
# set
#
z=ReducedFunction(domain).getX()[1]
z_top=0
V_P=0
V_S=0
Delta=0
Eps=0
Tilt=0
Rho=0
z_top=depth
for l in range(len(layers)):
m=whereNonPositive(z-z_top)*wherePositive(z-(z_top-layers[l]))
V_P = V_P * (1-m) + v_P[l] * m
V_S = V_S * (1-m) + v_S[l] * m
Delta = Delta * (1-m) + delta[l]* m
Eps = Eps * (1-m) + eps[l] * m
Tilt = Tilt * (1-m) + tilt[l] * m
Rho = Rho * (1-m) + rho[l] * m
z_top-=layers[l]
sw=TTIWave(domain, V_P, V_S, wl, src_tags[0], source_vector = src_dir,
eps=Eps, delta=Delta, rho=Rho, theta=Tilt,
absorption_zone=absorption_zone, absorption_cut=1e-2, lumping=lumping)
srclog=Locator(domain, [ (r , depth) for r in receiver_line ] )
grploc=[ (x[0], 0.) for x in srclog.getX() ]
tracer_x=SimpleSEGYWriter(receiver_group=grploc, source=srcloc, sampling_interval=sampling_interval, text='x-displacement')
tracer_z=SimpleSEGYWriter(receiver_group=grploc, source=srcloc, sampling_interval=sampling_interval, text='z-displacement')
if not tracer_x.obspy_available():
print("\nWARNING: obspy not available, SEGY files will not be written\n")
elif getMPISizeWorld() > 1:
print("\nWARNING: SEGY files cannot be written with multiple processes\n")
t=0.
mkDir('output')
n=0
k_out=0
print("calculation starts @ %s"%(time.asctime(),))
while t < t_end:
t,u = sw.update(t+sampling_interval)
tracer_x.addRecord(srclog(u[0]))
tracer_z.addRecord(srclog(u[1]))
print("t=%s, src=%s: \t %s \t %s \t %s"%(t, wl.getValue(t),srclog(u[1])[0], srclog(u[1])[src_id], srclog(u[1])[-1]))
if not n_out is None and n%n_out == 0:
print("time step %s written to file %s"%(n_out, "output/u_%d.silo"%(k_out,)))
try:
saveSilo("output/u_%d.silo"%(k_out,), u=u)
except:
print("Failed saving silo file. Was escript build without Silo support?")
k_out+=1
n+=1
if tracer_x.obspy_available() and getMPISizeWorld() == 1:
tracer_x.write('output/lineX.sgy')
tracer_z.write('output/lineZ.sgy')
print("calculation completed @ %s"%(time.asctime(),))
else: # no speckley
print("The Speckley module is not available")
|