File: synthetic_sonicHTI.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (190 lines) | stat: -rw-r--r-- 6,371 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import division
from __future__ import print_function
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

from esys.escript import *
from esys.escript import unitsSI as U
from esys.escript.pdetools import Locator
from esys.weipa import saveSilo
from esys.downunder import Ricker, SonicHTIWave, SimpleSEGYWriter
from math import ceil
import time, os

try:
    from esys.ripley import Brick, Rectangle
    HAVE_RIPLEY = True
except ImportError:
    HAVE_RIPLEY = False

if HAVE_RIPLEY:
    DIM=2          # spatial dimension

    # layers from the bottom up:
    layers = [ 1*U.km     , 1*U.km  ,700*U.m, 500*U.m, 800*U.m ]
    v_Ps= [ 3.8 * U.km/U.sec , 3. * U.km/U.sec, 2.5*U.km/U.sec, 1.9*U.km/U.sec, 1.5*U.km/U.sec]
    epss =[   0., 0.24, 0, 0.1, 0]
    deltas=[  0.,  0.1, 0.,0.03,0 ]
    azmths=[  0.,0.,0,  0, 0.]

    dt=0.5*U.msec

    ne_z=40

    dt=0.5*U.msec

    t_end=0.008*U.sec #only this low for testing purposes
    frq=15.*U.Hz
    tcenter=None
    sampling_interval=4*U.msec
    numRcvPerLine=101
    rangeRcv=4.*U.km
    src_dir=[0,1]
    absorption_zone=1000*U.m

    # location of source in crossing array lines with in 0..numRcvInLine one needs to be None
    srcEW=numRcvPerLine//2
    srcNS=None
    # dommain dimension
    width_x=rangeRcv + 2*absorption_zone
    width_y=width_x
    depth=sum(layers)
    ne_x=int(ceil(ne_z*width_x/depth))
    #
    # create array 
    #
    receiver_line=[  absorption_zone  + i * (rangeRcv//(numRcvPerLine-1) ) for i in range(numRcvPerLine) ]
    #
    #   set source location with tag "source""
    #
    src_tags=["source"]

    if srcEW:
          srcNS=numRcvPerLine//2
    elif srcNS:
          srcEW=numRcvPerLine//2
    else:
        raise ValueError("on of the variables srcEW or srcNS must be None!")
    if DIM == 2:    
        src_locations  = [ (receiver_line[srcEW], depth) ]
        src_loc_2D=(receiver_line[srcEW], 0.)
    else:
        src_locations  = [ (receiver_line[srcEW], receiver_line[srcNS], depth)]
        src_loc_2D=(receiver_line[srcEW], receiver_line[srcNS])

    #
    #   create sensor arrays:
    #
    # East-west line of receiver
    rcv_locations=[]
    rg=[]
    mid_point=receiver_line[len(receiver_line)//2]

    for ix in range(len(receiver_line)):
            if DIM == 2:
                rcv_locations.append((receiver_line[ix],  depth))
                rg.append( ( receiver_line[ix], 0.) ) 
            else:
               rcv_locations.append((receiver_line[ix], mid_point, depth))
               rg.append( ( receiver_line[ix], mid_point) ) 
    # North-south line of receiver
    if DIM == 3:
         for iy in range(len(receiver_line)):
                rcv_locations.append((mid_point, receiver_line[iy],  depth))
                rg.append( (  mid_point, receiver_line[iy]) ) 
    #
    # create domain:
    #
    if DIM == 2:
       domain=Rectangle(ne_x, ne_z ,l0=width_x, l1=depth, 
            diracPoints=src_locations, diracTags=src_tags)
    else:
       domain=Brick(ne_x,ne_x,ne_z,l0=width_x,l1=width_y,l2=depth, 
            diracPoints=src_locations, diracTags=src_tags)
    wl=Ricker(frq, tcenter)

    #======================================================================
    z=Function(domain).getX()[DIM-1]
    z_bottom=0
    v_p=0
    delta=0
    vareps=0
    azmth=0
    rho=0
    for l in range(len(layers)):
           m=wherePositive(z-z_bottom)*whereNonPositive(z-(z_bottom+layers[l]))
           v_p=v_p*(1-m)+v_Ps[l]*m
           vareps=vareps*(1-m)+epss[l]*m
           azmth=azmth*(1-m)+azmths[l]*m
           delta=delta*(1-m)+deltas[l]*m
           z_bottom+=layers[l]

    sw=SonicHTIWave(domain, v_p, wl, src_tags[0], dt=dt, source_vector = src_dir, eps=vareps, delta=delta, azimuth=azmth,  \
                         absorption_zone=absorption_zone, absorption_cut=1e-2, lumping=False)

    #
    #  print some info:
    #
    print("ne_x = ", ne_x)
    print("ne_z = ", ne_z)
    print("h_x = ", width_x/ne_x)
    print("h_z = ", depth/ne_z)
    print("dt = ", sw.getTimeStepSize()*1000, "msec")
    print("width_x = ", width_x)
    print("depth = ", depth)
    print("number receivers = ", numRcvPerLine)
    print("receiver spacing = ", receiver_line[1]-receiver_line[0])
    print("sampling time = ", sampling_interval*1000,"msec")
    print("source @ ", src_locations[0])
    #
    loc=Locator(domain,rcv_locations)
    tracerP=SimpleSEGYWriter(receiver_group=rg, source=src_loc_2D, sampling_interval=sampling_interval, text='P')
    tracerQ=SimpleSEGYWriter(receiver_group=rg, source=src_loc_2D, sampling_interval=sampling_interval, text='Q')

    if not tracerP.obspy_available():
        print("\nWARNING: obspy not available, SEGY files will not be written\n")
    elif getMPISizeWorld() > 1:
        print("\nWARNING: SEGY files cannot be written with multiple processes\n")

    t=0.
    OUT_DIR="out%sm%smus"%(int(width_x/ne_x),int(sw.getTimeStepSize()*1000000))
    mkDir(OUT_DIR)
    n=0
    k=0
    timer1=time.time()
    while t < t_end:
        t,u = sw.update(t+sampling_interval)
        Plog=loc(u[1])
        Qlog=loc(u[0])
        tracerP.addRecord(Plog)
        tracerQ.addRecord(Qlog)
        print(t, wl.getValue(t)," :", Plog[0], Plog[srcEW], Plog[-1])
    timer1=time.time()-timer1
    print("time= %e sec; %s sec per step"%(timer1,timer1/max(sw.n,1)))

    if tracerP.obspy_available() and getMPISizeWorld() == 1:
        tracerP.write(os.path.join(OUT_DIR,'lineP.sgy'))
        tracerQ.write(os.path.join(OUT_DIR,'lineQ.sgy'))

else: # no ripley
    print("The Ripley module is not available")