1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
##############################################################################
#
# Copyright (c) 2015-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""
Test script to run test model COMMEMI-1
"""
from __future__ import print_function, division
import matplotlib
# The following line is here to allow automated testing. Remove or comment if
# you would like to display the final plot in a window instead.
matplotlib.use('agg')
import datetime
import numpy
import esys.downunder.magtel2d as mt2d
import esys.escript as escript
import esys.escript.pdetools as pdetools
try:
import esys.finley as finley
HAVE_FINLEY = True
except ImportError:
HAVE_FINLEY = False
HAVE_DIRECT = escript.hasFeature("PASO_DIRECT") or escript.hasFeature('trilinos')
#-------------------------------------------------------------
# The following functions create the mesh used by this example
#-------------------------------------------------------------
def makeLayerCake(x_start,x_extent,z_layers):
# --------------------------------------------------------------------------
# DESCRIPTION:
# -----------
# This is a utility function which sets up a 2D model with N layers.
#
# ARGUMENTS:
# ----------
# x_start :: start coordinate of mesh.
# x_extent :: horizontal extent of mesh.
# z_layers :: list with interface coordinates.
#
# RETURNS:
# --------
# borders :: borders of layers.
# air_earth_interface :: line at the air/earth interface.
#
# AUTHOR:
# -------
# Ralf Schaa,
# University of Queensland
#
#
# HISTORY:
# --------
#
# --------------------------------------------------------------------------
import esys.pycad as pycad # @UnresolvedImport
import esys.weipa as weipa # @UnresolvedImport
import esys.finley as finley # @UnresolvedImport
import esys.escript as escript # @UnresolvedImport
# --------------------------------------------------------------------------
# Point definitions.
# --------------------------------------------------------------------------
# Loop through all layers and define the vertices at all interfaces.
scale = 1.0
points = []
for i in range(0,len(z_layers)):
# Adjust scale at corners of air/earth interface:
if z_layers[i] == 0:
scale = 0.15
else:
scale = 1.0
points.append( pycad.Point(x_start , z_layers[i], 0.0, local_scale = scale) ) # Left-Corner.
points.append( pycad.Point(x_start + x_extent, z_layers[i], 0.0, local_scale = scale) ) # Right-Corner.
# --------------------------------------------------------------------------
# Line definitions.
# --------------------------------------------------------------------------
# Now connect the points to define the horizontal lines for all interfaces:
hlines = []
for i in range(0,len(points),2):
if i <= len(points)-1:
hlines.append( pycad.Line(points[i],points[i+1]) )
# Now connect the points to define the vertical lines for all interfaces:
vlines_left = []
for i in range(0,len(points),2):
if i <= len(points)-3:
vlines_left.append( pycad.Line(points[i],points[i+2]) )
vlines_right = []
for i in range(0,len(points),2):
if i <= len(points)-4:
vlines_right.append( pycad.Line(points[i+1],points[i+3]) )
# --------------------------------------------------------------------------
# Curveloop and Area definitions.
# --------------------------------------------------------------------------
# Join line segments for each layer.
borders = []
for i in range(0,len(z_layers)-1):
border = [ hlines[i],vlines_right[i],-hlines[i+1],-vlines_left[i] ]
borders.append( pycad.CurveLoop( border) )
# --------------------------------------------------------------------------
# Return values.
# --------------------------------------------------------------------------
# Explicitly specify the air-earth-boundary:
air_earth_interface = hlines[1]
return borders, air_earth_interface
#_______________________________________________________________________________
def setupMesh(mode, x_start, x_extent, a_extent, z_layers, anomaly_coord, elem_sizes):
# --------------------------------------------------------------------------
# DESCRIPTION:
# -----------
# This is a utility function which sets up the COMMEMI-1 mesh.
#
#
# ARGUMENTS:
# ----------
# mode :: TE or TM mode.
# x_start :: horizontal start-point mesh.
# x_extent :: horizontal extent of mesh.
# a_extent :: vertical extent of air-layer.
# z_layers :: list with coordinates of top-interfaces in Z-direction, incl. basement.
# anomaly_coord :: dictionary with coordinate tuples of anomalies, counterclockwise.
# elem_sizes :: mesh element sizes, large, normal, small.
#
# RETURNS:
# --------
# <Nothing> A mesh file is written to the output folder.
#
#
# AUTHOR:
# -------
# Ralf Schaa,
# The University of Queensland
#
#
# HISTORY:
# --------
#
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# Imports.
# --------------------------------------------------------------------------
# System imports.
import math
# Escript modules.
import esys.pycad as pycad # @UnresolvedImport
import esys.finley as finley # @UnresolvedImport
import esys.escript as escript # @UnresolvedImport
import esys.weipa as weipa # @UnresolvedImport
# <Note>: "@UnresolvedImport" ignores any warnings in Eclipse/PyDev (PyDev has trouble with external libraries).
# Warn about magnetotelluric TM mode:
if mode.lower() == 'tm':
print("TM mode not yet supported")
return None
# --------------------------------------------------------------------------
# Anomaly border.
# --------------------------------------------------------------------------
#<Note>: define the anomaly which must be 'cut out' in the main mesh.
# Prepare list to store the anomaly borders:
border_anomaly = []
# Cycle anomaly dictionary and define the border for each.
for anomaly in anomaly_coord:
# Extract the coordinates for current key:
coord = anomaly_coord[anomaly]
# Points defining the anomaly from left-top.
points0 = []
for i in range( 0, len(coord) ):
points0.append(pycad.Point(coord[i][0], coord[i][1], 0.0))
# Define the line segments connecting the points.
lines0 = []
for i in range( 0, len(points0)-1 ):
lines0.append(pycad.Line(points0[i],points0[i+1]))
# Connect the last segment from end to start:
lines0.append(pycad.Line(points0[-1], points0[0]))
# And define the border of the anomalous area.
border_anomaly.append( pycad.CurveLoop(*lines0) )
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Get the borders for each layer (air & host).
# --------------------------------------------------------------------------
# Borders around layers and the air/earth interface.
borders, air_earth_interface = makeLayerCake(x_start,x_extent,z_layers)
# --------------------------------------------------------------------------
# Specification of number of elements in domains.
# --------------------------------------------------------------------------
#<Note>: specifying the number of mesh elements is somewhat heuristic
# and is dependent on the mesh size and the anomaly sizes.
coord = anomaly_coord["anomaly_1"]
# First get the max-length of the anomaly to specify the number of elements.
length = max(( abs(coord[2][0]-coord[0][0]) ), # X-length
( abs(coord[2][1]-coord[0][1]) )) # Y-length
# Specify number of elements in air, anomaly and on air/earth interface:
nr_elements_air = 1 * x_extent / elem_sizes["large"]
nr_elements_anomaly = 2 * length / elem_sizes["small"]
nr_elements_interface = 4 * x_extent / elem_sizes["small"]
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Domain definitions.
# --------------------------------------------------------------------------
# Define the air & layer areas; note the 'holes' specifiers.
domain_air = pycad.PlaneSurface( borders[0] )
domain_host = pycad.PlaneSurface( borders[1] , holes = [ border_anomaly[0] ] )
domain_anomaly = pycad.PlaneSurface( border_anomaly[0] )
# Specify the element sizes in the domains and along the interface.
#<Note>: Sizes must be assigned in the order as they appear below:
domain_air.setElementDistribution( nr_elements_air )
domain_anomaly.setElementDistribution( nr_elements_anomaly )
air_earth_interface.setElementDistribution( nr_elements_interface )
# Ready to define the mesh-design..
design2D = pycad.gmsh.Design(dim=2, element_size=elem_sizes["normal"] , keep_files=False)
# ..and also specify the domains for tagging with property values later on:
design2D.addItems( pycad.PropertySet("domain_air" , domain_air),
pycad.PropertySet("domain_host" , domain_host),
pycad.PropertySet("domain_anomaly", domain_anomaly) )
# Now define the unstructured finley-mesh..
model2D = finley.MakeDomain(design2D)
#___________________________________________________________________________
return model2D
#___________________________________________________________________________
def generateCommemi1Mesh():
# --------------------------------------------------------------------------
# Geometric mesh parameters.
# --------------------------------------------------------------------------
# Mesh extents.
a_extent = 20000 # 20km - Vertical extent of air-layer in (m).
z_extent = 20000 # 20km - Vertical extent of subsurface in (m).
x_extent = 40000 # 40km - Horizontal extent of mesh in (m).
# Start point of mesh.
x_start = 0 #-x_extent/2.0
# Define interface locations in z-direction: top, air/earth, basement.
z_layers = [ a_extent, 0, -z_extent]
# Mesh elements sizes.
elem_sizes = {
'large' : 10.00 * x_extent/100.0, # 5.00% of x_extent.
'normal': 05.00 * x_extent/100.0, # 2.50% of x_extent.
'small' : 00.50 * x_extent/100.0 # 0.25% of x_extent.
}
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Geometric anomaly parameters.
# --------------------------------------------------------------------------
# Extents of the rectangular 2D anomaly.
x_anomaly = 1000 # 1km - Horizontal extent of anomaly in (m).
z_anomaly = 2000 # 2km - Vertical extent of anomaly in (m).
# Coordinates of the rectangular 2D anomaly.
ya1 = -250 # Top
ya2 = -z_anomaly + ya1 # Bottom
xa1 = x_start + x_extent/2.0 - x_anomaly/2.0 # Left
xa2 = x_start + x_extent/2.0 + x_anomaly/2.0 # Right
# Save in dictionary as a list of tuples from left-top corner, counterclockwise.
anomaly_coord = {
'anomaly_1': ([xa1,ya1],[xa1,ya2],[xa2,ya2],[xa2,ya1])
}
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Setup the COMMEMI-1 mesh.
# --------------------------------------------------------------------------
# This creates the mesh and saves it to the output folder.
return setupMesh("TE", x_start, x_extent, a_extent, z_layers, anomaly_coord, elem_sizes)
#___________________________________________________________________________
#-------------------------------------------------------------
# End of mesh set up functions
#-------------------------------------------------------------
if HAVE_FINLEY:
# ---
# Initialisations
# ---
# Get timing:
startTime = datetime.datetime.now()
# Mode (TE includes air-layer, whereas TM does not):
mode = 'TE'
# Read the mesh file and define the 'finley' domain:
#mesh_file = "data/commemi1_te.fly"
#domain = finley.ReadMesh(mesh_file, numDim=2)
if escript.hasFeature('gmsh'):
domain = generateCommemi1Mesh()
# Sounding frequencies (in Hz):
freq_def = {"high":1.0e+1,"low":1.0e+1,"step":1}
# Frequencies will be mapped on a log-scale from
# 'high' to 'low' with 'step' points per decade.
# (also only one frequency must be passed via dict)
# Step sizes for sampling along vertical and horizontal axis (in m):
xstep=400
zstep=200
# ---
# Resistivity model
# ---
# Resistivity values assigned to tagged regions (in Ohm.m):
rho = [
1.0e+14, # 0: air
100.0 , # 1: host
0.5 # 2: anomaly
]
# Tags must match those in the file:
tags = ["domain_air", "domain_host", "domain_anomaly"]
# ---
# Layer definitions for 1D response at boundaries.
# ---
# List with resistivity values for left and right boundary.
rho_1d_left = [ rho[0], rho[1] ]
rho_1d_rght = [ rho[0], rho[1] ]
# Associated interfaces for 1D response left and right (must match the mesh file).
ifc_1d_left = [ 20000, 0, -20000]
ifc_1d_rght = [ 20000, 0, -20000]
# Save in dictionary with layer interfaces and resistivities left and right:
ifc_1d = {"left":ifc_1d_left , "right":ifc_1d_rght}
rho_1d = {"left":rho_1d_left , "right":rho_1d_rght}
# ---
# Run MT_2D
# ---
# Class options:
mt2d.MT_2D._solver = "DIRECT"
mt2d.MT_2D._debug = False
if mt2d.MT_2D._solver == "DIRECT" and not escript.hasFeature('paso'):
print("Trilinos direct solvers cannot currently handle PDE systems. Please compile with Paso.")
elif mt2d.MT_2D._solver == "DIRECT" and not HAVE_DIRECT:
if escript.getMPISizeWorld() > 1:
print("Direct solvers and multiple MPI processes are not currently supported.")
else:
print("escript was not built with support for direct solvers, aborting.")
elif not escript.hasFeature('gmsh'):
print("This example requires gmsh, aborting.")
else:
# Instantiate an MT_2D object with required & optional parameters:
obj_mt2d = mt2d.MT_2D(domain, mode, freq_def, tags, rho, rho_1d, ifc_1d,
xstep=xstep ,zstep=zstep, maps=None, plot=True)
# Solve for fields, apparent resistivity and phase:
mt2d_fields, arho_2d, aphi_2d = obj_mt2d.pdeSolve()
#
print(datetime.datetime.now()-startTime)
print("Done!")
else: # no finley
print("Finley module not available.")
|