1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
|
##############################################################################
#
# Copyright (c) 2015-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""
Test script to run test model COMMEMI-4
"""
from __future__ import print_function, division
import matplotlib
# The following line is here to allow automated testing. Remove or comment if
# you would like to display the final plot in a window instead.
matplotlib.use('agg')
import datetime
import numpy
import esys.downunder.magtel2d as mt2d
import esys.escript as escript
import esys.escript.pdetools as pdetools
try:
import esys.finley as finley
HAVE_FINLEY = True
except ImportError:
HAVE_FINLEY = False
HAVE_DIRECT = escript.hasFeature("PASO_DIRECT") or escript.hasFeature('trilinos')
def setupMesh(mode, coord, elem_sizes):
#---------------------------------------------------------------------------
# DESCRIPTION:
# -----------
# This is a utility function which setups the COMMEMI-4 mesh.
#
#
# ARGUMENTS:
# ----------
# mode :: TE or TM mode.
# coord :: dictionary with coordinate tuples.
# elem_sizes :: mesh element sizes, large, normal, small.
#
# RETURNS:
# --------
# <Nothing> A mesh file is written to the output folder.
#
#
# AUTHOR:
# -------
# Ralf Schaa,
# University of Queensland
#
#---------------------------------------------------------------------------
#---------------------------------------------------------------------------
# Imports.
#---------------------------------------------------------------------------
import esys.pycad as pycad # @UnresolvedImport
import esys.finley as finley # @UnresolvedImport
import esys.escript as escript # @UnresolvedImport
import esys.weipa as weipa # @UnresolvedImport
# <Note>: "@UnresolvedImport" ignores any warnings in Eclipse/PyDev (PyDev has trouble with external libraries).
model = "COMMEMI-4"
print("Preparing the mesh " + model + " ...")
print("")
# Warn about magnetotelluric TM mode:
if mode.lower() == 'tm':
print("TM mode not yet supported")
return
# Path to write the mesh:
outpath = "../out/commemi4"
# --------------------------------------------------------------------------
# Initialisations.
# --------------------------------------------------------------------------
# Get coordinates from dictionary as list of tuples
a0 = coord["air"]
l1 = coord["lyr1"]
s1 = coord["slab"]
b1 = coord["basin"]
l2 = coord["lyr2"]
l3 = coord["lyr3"]
# Mesh length from top-boundary.
x_extent = abs(a0[3][0]-a0[0][0])
# --------------------------------------------------------------------------
# Point definitions.
# --------------------------------------------------------------------------
#<Note>: define all points spanning the mesh, anomalies and layers;
# note also shared domain points must be defined only once.
# Mesh top boundary.
air = []
air.append( pycad.Point( *a0[0] ) ) # 0: left , top (@ boundary)
air.append( pycad.Point( *a0[3] ) ) # 3: right , top (@ boundary)
# First-layer.
ly1 = []
ly1.append( pycad.Point( *l1[0] ) ) # 0: left , top (@ air/earth interface)
ly1.append( pycad.Point( *l1[1] ) ) # 1: left , bottom (@ boundary)
ly1.append( pycad.Point( *l1[2] ) ) # 2: right , bottom (@ slab/basin)
ly1.append( pycad.Point( *l1[3] ) ) # 3: right , bottom (@ boundary)
ly1.append( pycad.Point( *l1[4] ) ) # 4: right , top (@ air/earth interface)
# Slab.
sl1 = []
sl1.append( ly1[1] ) # 0: left , top (@ boundary)
sl1.append( pycad.Point( *s1[1] ) ) # 1: left , bottom (@ boundary)
sl1.append( pycad.Point( *s1[2] ) ) # 2: right , bottom (@ slab/basin)
sl1.append( ly1[2] ) # 3: right , top (@ slab/basin)
# Basin.
bs1 = []
bs1.append( ly1[2] ) # 0: left , top (@ slab/basin)
bs1.append( sl1[2] ) # 1: left , centre (@ slab/basin)
bs1.append( pycad.Point( *b1[2] ) ) # 2: left , bottom (@ lyr1/basin)
bs1.append( pycad.Point( *b1[3] ) ) # 3: centre, bottom (@ lyr1/basin)
bs1.append( pycad.Point( *b1[4] ) ) # 4: edge , bottom (@ lyr1/basin)
bs1.append( pycad.Point( *b1[5] ) ) # 5: right , bottom (@ boundary)
bs1.append( ly1[3] ) # 6: right , top
# Second-Layer.
ly2 = []
ly2.append( sl1[1] ) # 0: left , top (@ lyr2/slab)
ly2.append( pycad.Point( *l2[1] ) ) # 1: left , bottom (@ boundary)
ly2.append( pycad.Point( *l2[2] ) ) # 2: right , bottom (@ boundary)
ly2.append( bs1[5] ) # 3: right , top (@ basin/boundary)
ly2.append( bs1[4] ) # 4: edge , top (@ lyr2/basin)
ly2.append( bs1[3] ) # 5: centre, top (@ lyr2/basin)
ly2.append( bs1[2] ) # 6: left , top (@ lyr2/basin)
ly2.append( sl1[2] ) # 7: left , centre (@ slab/basin)
# Basement layer.
ly3 = []
ly3.append( ly2[1] ) # 0: left , top (@ boundary)
ly3.append( pycad.Point( *l3[1] ) ) # 1: left , bottom (@ boundary)
ly3.append( pycad.Point( *l3[2] ) ) # 2: right , bottom (@ boundary)
ly3.append( ly2[2] ) # 3: right , top (@ boundary)
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Line definitions.
# --------------------------------------------------------------------------
#<Note>: connects the points to define lines counterclockwise;
# shared lines are re-used to ensure that all domains
# are recognised as parts of the same mesh.
# Air.
ln0 = []
ln0.append( pycad.Line(air[0], ly1[0]) ) # 0 left-top to left-bottom.
ln0.append( pycad.Line(ly1[0], ly1[4]) ) # 1 left-bottom to right-bottom (air-earth interface).
ln0.append( pycad.Line(ly1[4], air[1]) ) # 2 right-bottom to right-top.
ln0.append( pycad.Line(air[1], air[0]) ) # 3 right-top to left-top.
# Top Layer.
ln1 = []
ln1.append( pycad.Line(ly1[0], ly1[1]) ) # 0 left-top to left-bottom.
ln1.append( pycad.Line(ly1[1], ly1[2]) ) # 1 left-bottom to start-slab/basin.
ln1.append( pycad.Line(ly1[2], ly1[3]) ) # 2 start-slab/basin to basin-boundary
ln1.append( pycad.Line(ly1[3], ly1[4]) ) # 3 basin-boundary to right-top.
ln1.append( -ln0[1] ) # 4 right-top to left-top.
# Slab.
ln2 = []
ln2.append( pycad.Line(sl1[0], sl1[1]) ) # 0 left-top to left-bottom.
ln2.append( pycad.Line(sl1[1], sl1[2]) ) # 1 left-bottom to right-bottom.
ln2.append( pycad.Line(sl1[2], sl1[3]) ) # 2 right-bottom to right-top.
ln2.append( -ln1[1] ) # 3 right-top to left-top
# Basin.
ln3 = []
ln3.append( -ln2[2] ) # 0 left-top to left-centre.
ln3.append( pycad.Line(bs1[1], bs1[2]) ) # 1 left-centre to left-bottom.
ln3.append( pycad.Line(bs1[2], bs1[3]) ) # 2 left-bottom to mid-bottom.
ln3.append( pycad.Line(bs1[3], bs1[4]) ) # 3 mid-bottom to right-mid-top.
ln3.append( pycad.Line(bs1[4], bs1[5]) ) # 4 right-mid-top to right-bottom.
ln3.append( pycad.Line(bs1[5], bs1[6]) ) # 5 right-bottom to right-top.
ln3.append( -ln1[2] ) # 6 right-top to right-slab/basin.
# Layer below.
ln4 = []
ln4.append( pycad.Line(ly2[0], ly2[1]) ) # 0 left-top to left-bottom.
ln4.append( pycad.Line(ly2[1], ly2[2]) ) # 1 left-bottom to right-bottom.
ln4.append( pycad.Line(ly2[2], ly2[3]) ) # 2 right-bottom to right-top.
ln4.append( -ln3[4] ) # 3 right-top to right-mid-top.
ln4.append( -ln3[3] ) # 4 right-mid-top to mid-bottom.
ln4.append( -ln3[2] ) # 5 mid-bottom to left-bottom.
ln4.append( -ln3[1] ) # 6 left-bottom to left-centre.
ln4.append( -ln2[1] ) # 7 left-centre to left-top.
# Basement layer.
ln5 = []
ln5.append( pycad.Line(ly3[0], ly3[1]) ) # 0 left-top to left-bottom.
ln5.append( pycad.Line(ly3[1], ly3[2]) ) # 1 left-bottom to right-bottom.
ln5.append( pycad.Line(ly3[2], ly3[3]) ) # 2 right-bottom to right-top.
ln5.append( -ln4[1] ) # 3 right-top to left-top.
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Domain definitions.
# --------------------------------------------------------------------------
# First define all borders.
borders = []
borders.append( pycad.CurveLoop(*ln0) )
borders.append( pycad.CurveLoop(*ln1) )
borders.append( pycad.CurveLoop(*ln2) )
borders.append( pycad.CurveLoop(*ln3) )
borders.append( pycad.CurveLoop(*ln4) )
borders.append( pycad.CurveLoop(*ln5) )
# And next the domains.
domains = []
for i in range( len(borders) ):
domains.append( pycad.PlaneSurface(borders[i]) )
#___________________________________________________________________________
# --------------------------------------------------------------------------
# Set element sizes in domains.
# --------------------------------------------------------------------------
# Horizontal extents of segments along slab and basin:
x_extents = []
x_extents.append( l1[2][0] - l1[0][0] ) # 0
x_extents.append( l1[3][0] - l1[2][0] ) # 1
# Number of elements in the air-domain, first-layer as well as slab- and basin-domain.
domains[0].setElementDistribution( x_extent / elem_sizes["large"] )
domains[1].setElementDistribution( x_extent / (elem_sizes["small"]) )
domains[2].setElementDistribution( 0.4*x_extent / (elem_sizes["small"]) )
domains[3].setElementDistribution( 0.5*x_extent / (elem_sizes["small"]) )
#<Note> slab and basin multiplied by approximate ratio of their x_extent.
#___________________________________________________________________________
#---------------------------------------------------------------------------
# Now define the gmsh 'design' object.
#---------------------------------------------------------------------------
design2D = pycad.gmsh.Design(dim=2, element_size=elem_sizes['large'], keep_files=False)
# Also specify the domains for tagging with property values later on:
design2D.addItems(
pycad.PropertySet( "air" , domains[0]) ,
pycad.PropertySet( "lyr1" , domains[1]) ,
pycad.PropertySet( "slab" , domains[2]) ,
pycad.PropertySet( "basin" , domains[3]) ,
pycad.PropertySet( "lyr2" , domains[4]) ,
pycad.PropertySet( "lyr3" , domains[5]) )
# Now define the unstructured finley-mesh..
model2D = finley.MakeDomain(design2D)
#___________________________________________________________________________
return model2D
def generateCommemi4Mesh():
#---------------------------------------------------------------------------
# DESCRIPTION:
# ------------
# Script for preparing the COMMEMI-2 2D model.
#
# The COMMEMI-4 2D model consist of a 3-layered halfspace,
# hosting an anomalous horizontal slab and a basin-structure
# in the first layer.
#
# References:
# -----------
# See Franke A., p.89, 2003 (MSc. Thesis).
#
# Antje Franke, "Zweidimensionale Finite-Elemente-Modellierung
# niederfrequenter elektromagnetischer Felder in der Fernzone",
# Diplomarbeit (MSc.), 2003, Technische Universtitaet Freiberg.
#
# --------------------------------------------------------------------------
#---------------------------------------------------------------------------
# Geometric mesh parameters.
# --------------------------------------------------------------------------
# Horizontal extent and start point of mesh.
a_extent = 50000 # 50km - Vertical extent of air-layer in (m).
z_extent = 50000 # 50km - Vertical extent of subsurface in (m).
x_extent = 60000 # 60km - Horizontal extent of model in (m).
# Start point of mesh.
x_start = 0 #-x_extent/2.0
# Mesh elements sizes.
elem_sizes = {
'large' : 4.00 * x_extent/100.0, #
'normal': 2.00 * x_extent/100.0, #
'small' : 0.25 * x_extent/100.0 #
}
#____________________________________________________________________________
#---------------------------------------------------------------------------
# Coordinate definitions.
# --------------------------------------------------------------------------
# X-coordinates of all domain corners (in order of appearance, left to right).
x0 = x_start # left (@ boundary)
x1 = x_start + 24000 # centre (@ slab/basin)
x2 = x_start + 24000 + 8000 # edge-bottom (@ slab/lyr1)
x3 = x_start + 24000 + 8000 + 3000 # edge-top (@ slab/lyr1)
x4 = x_start + x_extent # right (@ boundary)
# Y-coordinates of all domain corners (in order of appearance, top to bottom).
y0 = a_extent # top
y1 = 0 # centre (@ air/earth)
y2 =-500 # lyr1-bottom (@ boundary-left)
y3 =-1000 # basin-bottom (@ boundary-right)
y4 =-2000 # slab-bottom (@ boundary-left)
y5 =-4000 # basin-bottom (@ centre)
y6 =-25000 # lyr1-bottom
y7 =-z_extent # bottom
# Save in dictionary as a list of tuples for each domain, from left-top corner, counterclockwise.
coord = {
'air' : ([x0, y0, 0], # 0: left , top
[x0, y1, 0], # 1: left , bottom (@ air/earth)
[x4, y1, 0], # 2: right , bottom (@ air/earth)
[x4, y0, 0]), # 3: right , top
'lyr1' : ([x0, y1, 0], # 0: left , top
[x0, y2, 0], # 1: left , bottom
[x1, y2, 0], # 2: right , bottom (@ slab/basin)
[x4, y2, 0], # 3: right , bottom (@ boundary)
[x4, y1, 0]), # 4: right , top
'slab' : ([x0, y2, 0], # 0: left , top
[x0, y4, 0], # 1: left , bottom
[x1, y4, 0], # 2: right , bottom (@ slab/basin)
[x1, y2, 0]), # 3: right , top (@ slab/basin)
'basin': ([x1, y2, 0], # 0: left , top (@ slab/basin)
[x1, y4, 0], # 1: left , centre (@ slab/basin)
[x1, y5, 0], # 2: left , bottom (@ lyr1/basin)
[x2, y5, 0], # 3: centre, bottom (@ lyr1/basin)
[x3, y3, 0], # 4: edge , bottom (@ lyr1/basin)
[x4, y3, 0], # 5: right , bottom (@ boundary)
[x4, y2, 0]), # 6: right , top
'lyr2' : ([x0, y4, 0], # 0: left , top
[x0, y6, 0], # 1: left , bottom
[x4, y6, 0], # 2: right , bottom
[x4, y3, 0], # 3: right , top (@ basin/boundary)
[x3, y3, 0], # 4: edge , top (@ lyr2/basin)
[x2, y5, 0], # 5: centre, top (@ lyr2/basin)
[x1, y5, 0], # 6: left , top (@ lyr2/basin)
[x1, y4, 0]), # 7: left , centre (@ slab/basin)
'lyr3' : ([x0, y6, 0], # 0: left , top
[x0, y7, 0], # 1: left , bottom
[x4, y7, 0], # 2: right , bottom
[x4, y6, 0]), # 3: right , top
}
#___________________________________________________________________________
#---------------------------------------------------------------------------
# Setup the COMMEMI-4 mesh.
#---------------------------------------------------------------------------
# This creates the mesh and saves it to the output folder.
return setupMesh("TE", coord, elem_sizes)
#___________________________________________________________________________
if HAVE_FINLEY:
# ---
# Initialisations
# ---
# Get timing:
startTime = datetime.datetime.now()
# Mode (TE includes air-layer, whereas TM does not):
mode = 'TE'
# Read the mesh file and define the 'finley' domain:
#mesh_file = "commemi4_tm.fly"
#domain = finley.ReadMesh(mesh_file, numDim=2)
if escript.hasFeature('gmsh'):
domain=generateCommemi4Mesh()
# Sounding frequencies (in Hz):
freq_def = {"high":1.0e+0,"low":1.0e-0,"step":1}
# Frequencies will be mapped on a log-scale from
# 'high' to 'low' with 'step' points per decade.
# (also only one frequency must be passed via dict)
# Step sizes for sampling along vertical and horizontal axis (in m):
xstep=300
zstep=250
# ---
# Resistivity model
# ---
# Resistivity values assigned to tagged regions (in Ohm.m):
rho = [
1.0e+14, # 0: air 1.0e-30
25.0 , # 1: lyr1 0.04
10.0 , # 2: slab 0.1
2.5 , # 3: basin 0.4
1000.0 , # 4: lyr2 0.001
5.0 # 5: lyr3 0.2
]
# Tags must match those in the file:
tags = ["air", "lyr1", "slab", "basin", "lyr2", "lyr3"]
# Optional user defined map of resistivity:
def f4(x,z,r): return escript.sqrt(escript.sqrt(x*x+z*z))/r
maps = [None, None, None, None, f4, None]
# ---
# Layer definitions for 1D response at boundaries.
# ---
# List with resistivity values for left and right boundary.
rho_1d_left = [ rho[0], rho[1], rho[2], rho[4], rho[5] ]
rho_1d_rght = [ rho[0], rho[1], rho[3], rho[4], rho[5] ]
# Associated interfaces for 1D response left and right (must match the mesh file).
ifc_1d_left = [ 50000, 0, -500, -2000, -25000, -50000]
ifc_1d_rght = [ 50000, 0, -500, -1000, -25000, -50000]
# Save in dictionary with layer interfaces and resistivities left and right:
ifc_1d = {"left":ifc_1d_left , "right":ifc_1d_rght}
rho_1d = {"left":rho_1d_left , "right":rho_1d_rght}
# ---
# Adjust parameters here for TM mode
# ---
# Simply delete first element from lists:
if mode.upper() == 'TM':
tags.pop(0)
rho.pop(0)
rho_1d['left'].pop(0)
rho_1d['right'].pop(0)
ifc_1d['left'].pop(0)
ifc_1d['right'].pop(0)
if maps is not None:
maps.pop(0)
# ---
# Run MT_2D
# ---
# Class options:
mt2d.MT_2D._solver = "DIRECT"
mt2d.MT_2D._debug = False
if mt2d.MT_2D._solver == "DIRECT" and not escript.hasFeature('paso'):
print("Trilinos direct solvers cannot currently handle PDE systems. Please compile with Paso.")
elif mt2d.MT_2D._solver == "DIRECT" and not HAVE_DIRECT:
if escript.getMPISizeWorld() > 1:
print("Direct solvers and multiple MPI processes are not currently supported.")
else:
print("escript was not built with support for direct solvers, aborting.")
elif not escript.hasFeature('gmsh'):
print("This example requires gmsh, aborting.")
else:
# Instantiate an MT_2D object with required & optional parameters:
obj_mt2d = mt2d.MT_2D(domain, mode, freq_def, tags, rho, rho_1d, ifc_1d,
xstep=xstep ,zstep=zstep, maps=None, plot=True)
# Solve for fields, apparent resistivity and phase:
mt2d_fields, arho_2d, aphi_2d = obj_mt2d.pdeSolve()
#
print("Runtime:", datetime.datetime.now()-startTime)
print("Done!")
else: # no finley
print("Finley module not available.")
|