1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
##############################################################################
#
# Copyright (c) 2012-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""
example to demonstrate the use of Dirac Delta functions
"""
from __future__ import division, print_function
__copyright__="""Copyright (c) 2012-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
from esys.escript import *
from esys.escript.linearPDEs import LinearSinglePDE
from esys.weipa import saveVTK
try:
from esys.finley import Rectangle
HAVE_FINLEY = True
except ImportError:
HAVE_FINLEY = False
# generate domain:
if not HAVE_FINLEY:
print("Finley module not available")
else:
mydomain=Rectangle(30,30, l0=3, l1=2,
diracPoints=[(1.,1.), (2.,1.)], diracTags=['in', 'out'])
# fix the solution on the boundary
x = mydomain.getX()
gammaD = whereZero(x[0])+whereZero(x[1])+whereZero(x[0]-3.)+whereZero(x[1]-2.)
# fix the solution on the boundary
s=Scalar(0., DiracDeltaFunctions(mydomain))
s.setTaggedValue('in', +1.)
s.setTaggedValue('out', -1.)
# define PDE and get its solution u
mypde = LinearSinglePDE(domain=mydomain)
mypde.setValue(q=gammaD, A=kronecker(2), y_dirac=s)
u = mypde.getSolution()
print("Solution = ",str(u))
# write u to an external file
saveVTK("u.vtu",sol=u)
|