File: lame.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (63 lines) | stat: -rw-r--r-- 2,643 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function

#set up domain and symbols
from esys.escript import *
from esys.finley import Rectangle
from esys.weipa import saveSilo
mydomain = Rectangle(l0=1.,l1=1.,n0=10, n1=10)
u = Symbol('u',(2,), dim=2)
q = Symbol('q', (2,2))
sigma=Symbol('sigma',(2,2))
theta = Symbol('theta')
# q is a rotation matrix represented by a Symbol. Values can be substituted for 
# theta.
q[0,0]=cos(theta)
q[0,1]=-sin(theta)
q[1,0]=sin(theta)
q[1,1]=cos(theta)
# Theta gets substituted by pi/4 and masked to lie between .3 and .7 in the 
# vertical direction. Using this masking means that when q is used it will apply
# only to the specified area of the domain. 
x = Function(mydomain).getX()
q=q.subs(theta,(symconstants.pi/4)*whereNonNegative(x[1]-.30)*whereNegative(x[1]-.70))
# epsilon is defined in terms of u and has the rotation applied. 
epsilon0 = symmetric(grad(u))
epsilon = matrixmult(matrixmult(q,epsilon0),q.transpose(1))
# For the purposes of demonstration, an arbitrary c with isotropic constraints 
# is chosen here. In order to act as an isotropic material c is chosen such that 
# c00 = c11 = c01+c1+2*c55
c00 = 10
c01 = 8; c11 = 10
c05 = 0; c15 = 0; c55 = 1
# sigma is defined in terms of epsilon
sigma[0,0] = c00*epsilon[0,0]+c01*epsilon[1,1]+c05*2*epsilon[1,0]
sigma[1,1] = c01*epsilon[0,0]+c11*epsilon[1,1]+c15*2*epsilon[1,0]
sigma[0,1] = c05*epsilon[0,0]+c15*epsilon[1,1]+c55*2*epsilon[1,0]
sigma[1,0] = sigma[0,1]
sigma0=matrixmult(matrixmult(q.transpose(1),sigma),q)
# set up boundary conditions
x=mydomain.getX()
gammaD=whereZero(x[1])*[1,1]
yconstraint = FunctionOnBoundary(mydomain).getX()[1]
# The nonlinear PDE is set up, the values are substituted in and the solution is
# calculated y represents an external shearing force acting on the domain. 
# In this case a force of magnitude 50 acting in the x[0] direction.
p = NonlinearPDE(mydomain, u, debug=NonlinearPDE.DEBUG0)
p.setValue(X=sigma0,q=gammaD,y=[-50,0]*whereZero(yconstraint-1),r=[1,1])
v = p.getSolution(u=[0,0])
saveSilo("solution",solution=v)