1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Models}
\label{MODELS CHAPTER}
The following sections give a brief overview of the model classes and their
corresponding methods.
\input{stokessolver}
%\input{darcyfluxNew}
\input{darcyflux}
%\input{levelsetmodel}
\section{Isotropic Kelvin Material \label{IKM}}
As proposed by Kelvin~\cite{Muhlhaus2005} material strain
$D_{ij}=\frac{1}{2}(v_{i,j}+v_{j,i})$ can be decomposed into an elastic part
$D_{ij}^{el}$ and a visco-plastic part $D_{ij}^{vp}$:
\begin{equation}\label{IKM-EQU-2}
D_{ij}=D_{ij}^{el}+D_{ij}^{vp}
\end{equation}
with the elastic strain given as
\begin{equation}\label{IKM-EQU-3}
D_{ij}^{el'}=\frac{1}{2 \mu} \dot{\sigma}_{ij}'
\end{equation}
where $\sigma'_{ij}$ is the deviatoric stress (notice that $\sigma'_{ii}=0$).
If the material is composed by materials $q$ the visco-plastic strain can be
decomposed as
\begin{equation}\label{IKM-EQU-4}
D_{ij}^{vp'}=\sum_{q} D_{ij}^{q'}
\end{equation}
where $D_{ij}^{q}$ is the strain in material $q$ given as
\begin{equation}\label{IKM-EQU-5}
D_{ij}^{q'}=\frac{1}{2 \eta^{q}} \sigma'_{ij}
\end{equation}
and $\eta^{q}$ is the viscosity of material $q$.
We assume the following between the strain in material $q$
\begin{equation}\label{IKM-EQU-5b}
\eta^{q}=\eta^{q}_{N} \left(\frac{\tau}{\tau_{t}^q}\right)^{1-n^{q}}
\mbox{ with } \tau=\sqrt{\frac{1}{2}\sigma'_{ij} \sigma'_{ij}}
\end{equation}
for given power law coefficients $n^{q}\ge1$ and transition stresses
$\tau_{t}^q$, see~\cite{Muhlhaus2005}.
Notice that $n^{q}=1$ gives a constant viscosity.
After inserting \eqn{IKM-EQU-5} into \eqn{IKM-EQU-4} one gets:
\begin{equation}\label{IKM-EQU-6}
D_{ij}'^{vp}=\frac{1}{2 \eta^{vp}} \sigma'_{ij} \mbox{ with } \frac{1}{\eta^{vp}} = \sum_{q} \frac{1}{\eta^{q}} \;.
\end{equation}
and finally with~\ref{IKM-EQU-2}
\begin{equation}\label{IKM-EQU-2bb}
D_{ij}'=\frac{1}{2 \eta^{vp}} \sigma'_{ij}+\frac{1}{2 \mu} \dot{\sigma}_{ij}'
\end{equation}
The total stress $\tau$ needs to fulfill the yield condition\index{yield condition}
\begin{equation}\label{IKM-EQU-8c}
\tau \le \tau_{Y} + \beta \; p
\end{equation}
with the Drucker-Prager\index{Druck-Prager} cohesion factor\index{cohesion factor}
$\tau_{Y}$, Drucker-Prager friction $\beta$ and total pressure $p$.
The deviatoric stress needs to fulfill the equilibrium equation
\begin{equation}\label{IKM-EQU-1}
-\sigma'_{ij,j}+p_{,i}=F_{i}
\end{equation}
where $F_{j}$ is a given external force. We assume an incompressible medium:
\begin{equation}\label{IKM-EQU-2bbb}
-v_{i,i}=0
\end{equation}
Natural boundary conditions are taken in the form
\begin{equation}\label{IKM-EQU-Boundary}
\sigma'_{ij}n_{j}-n_{i}p=f
\end{equation}
which can be overwritten by a constraint
\begin{equation}\label{IKM-EQU-Boundary0}
v_{i}(x)=0
\end{equation}
where the index $i$ may depend on the location $x$ on the boundary.
\subsection{Solution Method \label{IKM-SOLVE}}
By using a first order finite difference approximation with step size
$dt>0$ \eqn{IKM-EQU-3} is transformed to
\begin{equation}\label{IKM-EQU-3b}
\dot{\sigma}_{ij}=\frac{1}{dt } \left( \sigma_{ij} - \sigma_{ij}^{-} \right)
\end{equation}
and
\begin{equation}\label{IKM-EQU-2b}
D_{ij}'=\left(\frac{1}{2 \eta^{vp}} + \frac{1}{2 \mu dt}\right) \sigma_{ij}'-\frac{1}{2 \mu dt } \sigma_{ij}^{-'}
\end{equation}
where $\sigma_{ij}^{-}$ is the stress at the previous time step. With
\begin{equation}\label{IKM-EQU-2c}
\dot{\gamma} = \sqrt{ 2 \left( D_{ij}' +
\frac{1}{ 2 \mu \; dt} \sigma_{ij}^{-'}\right)^2}
\end{equation}
we have
\begin{equation}
\tau = \eta_{eff} \cdot \dot{\gamma}
\end{equation}
where
\begin{equation}
\eta_{eff}= min( \left(\frac{1}{\mu \; dt}+\frac{1}{\eta^{vp}}\right)^{-1}
, \eta_{max}) \mbox{ with }
\eta_{max} = \left\{
\begin{array}{rcl}
\frac{\tau_{Y} + \beta \; p}{\dot{\gamma}} & & \dot{\gamma}>0 \\
&\mbox{ if } \\
\infty & & \mbox{otherwise}
\end{array}
\right.
\end{equation}
The upper bound $\eta_{max}$ makes sure that yield condition~\ref{IKM-EQU-8c}
holds. With this setting the equation \ref{IKM-EQU-2b} takes the form
\begin{equation}\label{IKM-EQU-10}
\sigma_{ij}' = 2 \eta_{eff} \left( D_{ij}' +
\frac{1}{ 2 \mu \; dt} \sigma_{ij}^{'-}\right)
\end{equation}
After inserting~\ref{IKM-EQU-10} into~\ref{IKM-EQU-1} we get
\begin{equation}\label{IKM-EQU-1ib}
-\left(\eta_{eff} (v_{i,j}+ v_{i,j})
\right)_{,j}+p_{,i}=F_{i}+
\left(\frac{\eta_{eff}}{\mu dt } \sigma_{ij}^{'-} \right)_{,j}
\end{equation}
Combining this with the incompressibility condition~\ref{IKM-EQU-2} we need to
solve a Stokes problem as discussed in \Sec{STOKES SOLVE} in each time step.
If we set
\begin{equation}\label{IKM-EQU-44}
\frac{1}{\eta(\tau)}= \frac{1}{\mu \; dt}+\frac{1}{\eta^{vp}}
\end{equation}
we need to solve the nonlinear problem
\begin{equation}
\eta_{eff} - min(\eta( \dot{\gamma} \cdot \eta_{eff})
, \eta_{max}) =0
\end{equation}
We use the Newton-Raphson scheme\index{Newton-Raphson scheme} to solve this
problem:
\begin{equation}\label{IKM-EQU-45}
\eta_{eff}^{(n+1)} = \min(\eta_{max},
\eta_{eff}^{(n)} -
\frac{\eta_{eff}^{(n)} - \eta( \tau^{(n)}) }
{1-\dot{\gamma} \cdot \eta'( \tau^{(n)} )} )
=\min(\eta_{max},
\frac{\eta( \tau^{(n)}) -\tau^{(n)} \cdot \eta'( \tau^{(n)} ) }
{1-\dot{\gamma} \cdot \eta'( \tau^{(n)} )} )
\end{equation}
where $\eta'$ denotes the derivative of $\eta$ with respect to $\tau$
and $\tau^{(n)} = \dot{\gamma} \cdot \eta_{eff}^{(n)}$.
Looking at the evaluation of $\eta$ in~\ref{IKM-EQU-44} it makes sense to
formulate the iteration~\ref{IKM-EQU-45} using $\Theta=\eta^{-1}$.
In fact we have
\begin{equation}
\eta' = - \frac{\Theta'}{\Theta^2}
\mbox{ with }
\Theta' = \sum_{q} \left(\frac{1}{\eta^{q}} \right)'
\label{IKM iteration 7}
\end{equation}
As
\begin{equation}\label{IKM-EQU-47}
\left(\frac{1}{\eta^{q}} \right)'
= \frac{n^{q}-1}{\eta^{q}_{N}} \cdot \frac{\tau^{n^{q}-2}}{(\tau_{t}^q)^{n^{q}-1}}
= \frac{n^{q}-1}{\eta^{q}}\cdot\frac{1}{\tau}
\end{equation}
we have
\begin{equation}\label{IKM-EQU-48}
\Theta' = \frac{1}{\tau} \omega \mbox{ with } \omega = \sum_{q}\frac{n^{q}-1}{\eta^{q}}
\end{equation}
which leads to
\begin{equation}\label{IKM-EQU-49}
\eta_{eff}^{(n+1)} = \min(\eta_{max},
\eta_{eff}^{(n)}
\frac{\Theta^{(n)} + \omega^{(n)} }
{\eta_{eff}^{(n)} \Theta^{(n)^2}+\omega^{(n)} })
\end{equation}
\subsection{Functions}
\begin{classdesc}{IncompressibleIsotropicFlowCartesian}{
domain
\optional{, stress=0
\optional{, v=0
\optional{, p=0
\optional{, t=0
\optional{, numMaterials=1
\optional{, verbose=True
\optional{, adaptSubTolerance=True
}}}}}}}}
opens an incompressible, isotropic flow problem in Cartesian coordinates on
the domain \var{domain}.
\var{stress}, \var{v}, \var{p}, and \var{t} set the initial deviatoric stress,
velocity, pressure and time.
\var{numMaterials} specifies the number of materials used in the power law
model. Some progress information is printed if \var{verbose} is set to \True.
If \var{adaptSubTolerance} is equal to \True the tolerances for subproblems
are set automatically.
The domain needs to support LBB compliant elements for the Stokes problem,
see~\cite{LBB} for details\index{LBB condition}.
For instance one can use second order polynomials for velocity and first order
polynomials for the pressure on the same element. Alternatively, one can use
macro elements\index{macro elements} using linear polynomials for both
pressure and velocity but with a subdivided element for the velocity.
Typically, the macro element method is more cost effective.
The fact that pressure and velocity are represented in different ways is
expressed by
\begin{python}
velocity=Vector(0.0, Solution(mesh))
pressure=Scalar(0.0, ReducedSolution(mesh))
\end{python}
\end{classdesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getDomain}{}
returns the domain.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getTime}{}
returns current time.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getStress}{}
returns current stress.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getDeviatoricStress}{}
returns current deviatoric stress.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getPressure}{}
returns current pressure.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getVelocity}{}
returns current velocity.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getDeviatoricStrain}{}
returns deviatoric strain of current velocity
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getTau}{}
returns current second invariant of deviatoric stress
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getGammaDot}{}
returns current second invariant of deviatoric strain
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setTolerance}{tol=1.e-4}
sets the tolerance used to terminate the iteration on a time step.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setFlowTolerance}{tol=1.e-4}
sets the relative tolerance for the incompressible solver, see
\class{StokesProblemCartesian} for details.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setElasticShearModulus}{mu=None}
sets the elastic shear modulus $\mu$. If \var{mu} is set to None (default)
elasticity is not applied.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setEtaTolerance=}{rtol=1.e-8}
sets the relative tolerance for the effective viscosity. Iteration on a time
step is completed if the relative of the effective viscosity is less than
\var{rtol}.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setDruckerPragerLaw}
{\optional{tau_Y=None, \optional{friction=None}}}
sets the parameters $\tau_{Y}$ and $\beta$ for the Drucker-Prager model in
condition~\ref{IKM-EQU-8c}. If \var{tau_Y} is set to None (default) then the
Drucker-Prager condition is not applied.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setElasticShearModulus}{mu=None}
sets the elastic shear modulus $\mu$. If \var{mu} is set to None (default)
elasticity is not applied.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setPowerLaws}{eta_N, tau_t, power}
sets the parameters of the power-law for all materials as defined in \eqn{IKM-EQU-5b}.
\var{eta_N} is the list of viscosities $\eta^{q}_{N}$,
\var{tau_t} is the list of reference stresses $\tau_{t}^q$,
and \var{power} is the list of power law coefficients $n^{q}$.
\end{methoddesc}
\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{update}{dt
\optional{, iter_max=100
\optional{, inner_iter_max=20
}}}
updates stress, velocity and pressure for time increment \var{dt}, where
\var{iter_max} is the maximum number of iteration steps on a time step to
update the effective viscosity and \var{inner_iter_max} is the maximum
number of iteration steps in the incompressible solver.
\end{methoddesc}
%\subsection{Example}
%later
\input{faultsystem}
%\section{Drucker Prager Model}
|