File: Models.tex

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (312 lines) | stat: -rw-r--r-- 11,677 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\chapter{Models}
\label{MODELS CHAPTER}

The following sections give a brief overview of the model classes and their
corresponding methods.

\input{stokessolver} 
%\input{darcyfluxNew}
\input{darcyflux}
%\input{levelsetmodel}

\section{Isotropic Kelvin Material \label{IKM}}
As proposed by Kelvin~\cite{Muhlhaus2005} material strain
$D_{ij}=\frac{1}{2}(v_{i,j}+v_{j,i})$ can be decomposed into an elastic part
$D_{ij}^{el}$ and a visco-plastic part $D_{ij}^{vp}$:
\begin{equation}\label{IKM-EQU-2}
D_{ij}=D_{ij}^{el}+D_{ij}^{vp}
\end{equation}
with the elastic strain given as
\begin{equation}\label{IKM-EQU-3}
D_{ij}^{el'}=\frac{1}{2 \mu} \dot{\sigma}_{ij}'
\end{equation}
where $\sigma'_{ij}$ is the deviatoric stress (notice that $\sigma'_{ii}=0$).
If the material is composed by materials $q$ the visco-plastic strain can be
decomposed as
\begin{equation}\label{IKM-EQU-4}
D_{ij}^{vp'}=\sum_{q} D_{ij}^{q'} 
\end{equation}
where $D_{ij}^{q}$ is the strain in material $q$ given as
\begin{equation}\label{IKM-EQU-5}
D_{ij}^{q'}=\frac{1}{2 \eta^{q}} \sigma'_{ij} 
\end{equation}
and $\eta^{q}$ is the viscosity of material $q$.
We assume the following between the strain in material $q$
\begin{equation}\label{IKM-EQU-5b}
\eta^{q}=\eta^{q}_{N} \left(\frac{\tau}{\tau_{t}^q}\right)^{1-n^{q}}
\mbox{ with } \tau=\sqrt{\frac{1}{2}\sigma'_{ij} \sigma'_{ij}}
\end{equation}
for given power law coefficients $n^{q}\ge1$ and transition stresses
$\tau_{t}^q$, see~\cite{Muhlhaus2005}.
Notice that $n^{q}=1$ gives a constant viscosity.
After inserting \eqn{IKM-EQU-5} into \eqn{IKM-EQU-4} one gets:
\begin{equation}\label{IKM-EQU-6}
D_{ij}'^{vp}=\frac{1}{2 \eta^{vp}} \sigma'_{ij} \mbox{ with } \frac{1}{\eta^{vp}} = \sum_{q} \frac{1}{\eta^{q}} \;.
\end{equation}
and finally with~\ref{IKM-EQU-2}
\begin{equation}\label{IKM-EQU-2bb}
D_{ij}'=\frac{1}{2 \eta^{vp}} \sigma'_{ij}+\frac{1}{2 \mu} \dot{\sigma}_{ij}'
\end{equation}
The total stress $\tau$ needs to fulfill the yield condition\index{yield condition}
\begin{equation}\label{IKM-EQU-8c}
\tau \le \tau_{Y} + \beta \; p
\end{equation}
with the Drucker-Prager\index{Druck-Prager} cohesion factor\index{cohesion factor}
$\tau_{Y}$, Drucker-Prager friction $\beta$ and total pressure $p$.
The deviatoric stress needs to fulfill the equilibrium equation
\begin{equation}\label{IKM-EQU-1}
-\sigma'_{ij,j}+p_{,i}=F_{i}
\end{equation}
where $F_{j}$ is a given external force. We assume an incompressible medium:
\begin{equation}\label{IKM-EQU-2bbb}
-v_{i,i}=0
\end{equation}
Natural boundary conditions are taken in the form
\begin{equation}\label{IKM-EQU-Boundary}
\sigma'_{ij}n_{j}-n_{i}p=f
\end{equation}
which can be overwritten by a constraint
\begin{equation}\label{IKM-EQU-Boundary0}
v_{i}(x)=0
\end{equation}
where the index $i$ may depend on the location $x$ on the boundary.

\subsection{Solution Method \label{IKM-SOLVE}}
By using a first order finite difference approximation with step size
$dt>0$ \eqn{IKM-EQU-3} is transformed to
\begin{equation}\label{IKM-EQU-3b}
\dot{\sigma}_{ij}=\frac{1}{dt } \left( \sigma_{ij} - \sigma_{ij}^{-} \right)
\end{equation}
and
\begin{equation}\label{IKM-EQU-2b}
D_{ij}'=\left(\frac{1}{2 \eta^{vp}} + \frac{1}{2 \mu dt}\right) \sigma_{ij}'-\frac{1}{2 \mu dt } \sigma_{ij}^{-'}
\end{equation}
where $\sigma_{ij}^{-}$ is the stress at the previous time step. With
\begin{equation}\label{IKM-EQU-2c}
\dot{\gamma} = \sqrt{ 2 \left( D_{ij}' +
\frac{1}{  2 \mu \; dt} \sigma_{ij}^{-'}\right)^2}
\end{equation} 
we have
\begin{equation}
\tau = \eta_{eff} \cdot \dot{\gamma}
\end{equation} 
where
\begin{equation}
\eta_{eff}= min( \left(\frac{1}{\mu \; dt}+\frac{1}{\eta^{vp}}\right)^{-1} 
, \eta_{max}) \mbox{ with } 
\eta_{max} = \left\{ 
\begin{array}{rcl}
\frac{\tau_{Y} + \beta \; p}{\dot{\gamma}} & & \dot{\gamma}>0 \\
&\mbox{ if } \\ 
\infty & & \mbox{otherwise}
\end{array}
\right.
\end{equation}
The upper bound $\eta_{max}$ makes sure that yield condition~\ref{IKM-EQU-8c}
holds. With this setting the equation \ref{IKM-EQU-2b} takes the form
\begin{equation}\label{IKM-EQU-10}
\sigma_{ij}' =  2 \eta_{eff}  \left( D_{ij}' +
\frac{1}{  2 \mu \; dt} \sigma_{ij}^{'-}\right)  
\end{equation}
After inserting~\ref{IKM-EQU-10} into~\ref{IKM-EQU-1} we get
\begin{equation}\label{IKM-EQU-1ib}
-\left(\eta_{eff} (v_{i,j}+ v_{i,j})
\right)_{,j}+p_{,i}=F_{i}+
 \left(\frac{\eta_{eff}}{\mu dt } \sigma_{ij}^{'-} \right)_{,j}
\end{equation}
Combining this with the incompressibility condition~\ref{IKM-EQU-2} we need to
solve a Stokes problem as discussed in \Sec{STOKES SOLVE} in each time step.

If we set 
\begin{equation}\label{IKM-EQU-44}
\frac{1}{\eta(\tau)}= \frac{1}{\mu \; dt}+\frac{1}{\eta^{vp}}
\end{equation}
we need to solve the nonlinear problem
\begin{equation}
\eta_{eff} -  min(\eta( \dot{\gamma} \cdot \eta_{eff}) 
, \eta_{max}) =0 
\end{equation}
We use the Newton-Raphson scheme\index{Newton-Raphson scheme} to solve this
problem:
\begin{equation}\label{IKM-EQU-45}
\eta_{eff}^{(n+1)} = \min(\eta_{max}, 
\eta_{eff}^{(n)} -
\frac{\eta_{eff}^{(n)} - \eta( \tau^{(n)}) }
{1-\dot{\gamma} \cdot \eta'( \tau^{(n)} )} )
=\min(\eta_{max},
\frac{\eta( \tau^{(n)}) -\tau^{(n)} \cdot  \eta'( \tau^{(n)} )  }
{1-\dot{\gamma} \cdot \eta'( \tau^{(n)} )} )
\end{equation} 
where $\eta'$ denotes the derivative of $\eta$ with respect to $\tau$
and $\tau^{(n)} = \dot{\gamma} \cdot \eta_{eff}^{(n)}$.
Looking at the evaluation of $\eta$ in~\ref{IKM-EQU-44} it makes sense to
formulate the iteration~\ref{IKM-EQU-45} using $\Theta=\eta^{-1}$.
In fact we have
\begin{equation}
\eta' = - \frac{\Theta'}{\Theta^2} 
\mbox{ with } 
\Theta' = \sum_{q} \left(\frac{1}{\eta^{q}} \right)'
\label{IKM iteration 7}
\end{equation} 
As
\begin{equation}\label{IKM-EQU-47}
\left(\frac{1}{\eta^{q}} \right)'
= \frac{n^{q}-1}{\eta^{q}_{N}} \cdot \frac{\tau^{n^{q}-2}}{(\tau_{t}^q)^{n^{q}-1}}
= \frac{n^{q}-1}{\eta^{q}}\cdot\frac{1}{\tau} 
\end{equation}
we have
\begin{equation}\label{IKM-EQU-48}
\Theta' = \frac{1}{\tau} \omega \mbox{ with } \omega = \sum_{q}\frac{n^{q}-1}{\eta^{q}} 
\end{equation}
which leads to
\begin{equation}\label{IKM-EQU-49}
\eta_{eff}^{(n+1)} = \min(\eta_{max}, 
\eta_{eff}^{(n)}
\frac{\Theta^{(n)}  + \omega^{(n)}  }
{\eta_{eff}^{(n)} \Theta^{(n)^2}+\omega^{(n)} })
\end{equation} 

\subsection{Functions}

\begin{classdesc}{IncompressibleIsotropicFlowCartesian}{
domain
\optional{, stress=0
\optional{, v=0
\optional{, p=0
\optional{, t=0
\optional{, numMaterials=1
\optional{, verbose=True
\optional{, adaptSubTolerance=True
}}}}}}}}
opens an incompressible, isotropic flow problem in Cartesian coordinates on
the domain \var{domain}.
\var{stress}, \var{v}, \var{p}, and \var{t} set the initial deviatoric stress,
velocity, pressure and time.
\var{numMaterials} specifies the number of materials used in the power law
model. Some progress information is printed if \var{verbose} is set to \True.
If \var{adaptSubTolerance} is equal to \True the tolerances for subproblems
are set automatically.

The domain needs to support LBB compliant elements for the Stokes problem,
see~\cite{LBB} for details\index{LBB condition}.
For instance one can use second order polynomials for velocity and first order
polynomials for the pressure on the same element. Alternatively, one can use
macro elements\index{macro elements} using linear polynomials for both
pressure and velocity but with a subdivided element for the velocity.
Typically, the macro element method is more cost effective.
The fact that pressure and velocity are represented in different ways is
expressed by
\begin{python}
  velocity=Vector(0.0, Solution(mesh))
  pressure=Scalar(0.0, ReducedSolution(mesh))
\end{python}
\end{classdesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getDomain}{}
returns the domain.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getTime}{}
returns current time.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getStress}{}
returns current stress.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getDeviatoricStress}{}
returns current deviatoric stress.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getPressure}{}
returns current pressure.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getVelocity}{}
returns current velocity.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getDeviatoricStrain}{}
returns deviatoric strain of current velocity
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getTau}{}
returns current second invariant of deviatoric stress
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{getGammaDot}{}
returns current second invariant of deviatoric strain
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setTolerance}{tol=1.e-4}
sets the tolerance used to terminate the iteration on a time step.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setFlowTolerance}{tol=1.e-4}
sets the relative tolerance for the incompressible solver, see
\class{StokesProblemCartesian} for details.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setElasticShearModulus}{mu=None}
sets the elastic shear modulus $\mu$. If \var{mu} is set to None (default)
elasticity is not applied.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setEtaTolerance=}{rtol=1.e-8}
sets the relative tolerance for the effective viscosity. Iteration on a time
step is completed if the relative of the effective viscosity is less than
\var{rtol}.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setDruckerPragerLaw}
{\optional{tau_Y=None, \optional{friction=None}}}
sets the parameters $\tau_{Y}$ and $\beta$ for the Drucker-Prager model in
condition~\ref{IKM-EQU-8c}. If \var{tau_Y} is set to None (default) then the
Drucker-Prager condition is not applied.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setElasticShearModulus}{mu=None}
sets the elastic shear modulus $\mu$. If \var{mu} is set to None (default)
elasticity is not applied.
\end{methoddesc}


\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{setPowerLaws}{eta_N, tau_t, power}
sets the parameters of the power-law for all materials as defined in \eqn{IKM-EQU-5b}.
\var{eta_N} is the list of viscosities $\eta^{q}_{N}$,
\var{tau_t} is the list of reference stresses  $\tau_{t}^q$,
and \var{power} is the list of power law coefficients $n^{q}$.
\end{methoddesc}

\begin{methoddesc}[IncompressibleIsotropicFlowCartesian]{update}{dt
\optional{, iter_max=100
\optional{, inner_iter_max=20
}}}
updates stress, velocity and pressure for time increment \var{dt}, where
\var{iter_max} is the maximum number of iteration steps on a time step to
update the effective viscosity and \var{inner_iter_max} is the maximum
number of iteration steps in the incompressible solver.
\end{methoddesc}

%\subsection{Example}
%later

\input{faultsystem}

%\section{Drucker Prager Model}