File: escript.tex

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (2250 lines) | stat: -rw-r--r-- 89,629 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\chapter{The \escript Module}\label{ESCRIPT CHAP}

\section{Concepts}
\escript is a \PYTHON module that allows you to represent the values of
a function at points in a \Domain in such a way that the function will
be useful for the Finite Element Method (FEM) simulation. It also
provides what we call a function space that describes how the data is
used in the simulation. Stored along with the data is information
about the elements and nodes which will be used by the domain (e.g. \finley).

\subsection{Function spaces}
In order to understand what we mean by the term 'function space',
consider that the solution of a partial differential
equation\index{partial differential equation} (PDE) is a function on a domain
$\Omega$.  When solving a PDE using FEM, the solution is
piecewise-differentiable but, in general, its gradient is discontinuous.
To reflect these different degrees of smoothness, different function spaces
are used.
For instance, in FEM, the displacement field is represented by its values at
the nodes of the mesh, and so is continuous.
The strain, which is the symmetric part of the gradient of the displacement
field, is stored on the element centers, and so is considered to be
discontinuous.

A function space is described by a \FunctionSpace object.
The following statement generates the object \var{solution_space} which is
a \FunctionSpace object and provides access to the function space of
PDE solutions on the \Domain \var{mydomain}:

\begin{python}
  solution_space=Solution(mydomain)
\end{python}
The following generators for function spaces on a \Domain \var{mydomain} are commonly used:
\begin{itemize}
\item \var{Solution(mydomain)}: solutions of a PDE
\item \var{ReducedSolution(mydomain)}: solutions of a PDE with a reduced
    smoothness requirement, e.g. using a lower order approximation on the same
    element or using macro elements\index{macro elements}
\item \var{ContinuousFunction(mydomain)}: continuous functions, e.g. a temperature distribution
\item \var{Function(mydomain)}: general functions which are not necessarily continuous, e.g. a stress field
\item \var{FunctionOnBoundary(mydomain)}: functions on the boundary of the domain, e.g. a surface pressure
\item \var{DiracDeltaFunctions(mydomain)}: functions defined on a set of points
\item \var{FunctionOnContact0(mydomain)}: functions on side $0$ of a discontinuity
\item \var{FunctionOnContact1(mydomain)}: functions on side $1$ of a discontinuity
\end{itemize}
In some cases under-integration is used. For these cases the user may use a
\FunctionSpace from the following list:
\begin{itemize}
\item \var{ReducedFunction(mydomain)}
\item \var{ReducedFunctionOnBoundary(mydomain)}
\item \var{ReducedFunctionOnContact0(mydomain)}
\item \var{ReducedFunctionOnContact1(mydomain)}
\end{itemize}
In comparison to the corresponding full version they use a reduced number of
integration nodes (typically one only) to represent values.

\begin{figure}
\centering
\scalebox{0.97}{\includegraphics{EscriptDiagram1}}
\caption{\label{ESCRIPT DEP}Dependency of function spaces in \finley.
An arrow indicates that a function in the \FunctionSpace at the starting point
can be interpolated to the \FunctionSpace of the arrow target.
All function spaces above the dotted line can be interpolated to any of
the function spaces below the line. See also \Sec{SEC Projection}.}
\end{figure}

The reduced smoothness for a PDE solution is often used to fulfill the
Ladyzhenskaya-Babuska-Brezzi condition~\cite{LBB} when solving saddle point
problems\index{saddle point problems}, e.g. the Stokes equation.
A discontinuity\index{discontinuity} is a region within the domain across
which functions may be discontinuous.
The location of a discontinuity is defined in the \Domain object.
\fig{ESCRIPT DEP} shows the dependency between the types of function spaces
in \finley (other libraries may have different relationships).

The solution of a PDE is a continuous function. Any continuous function can
be seen as a general function on the domain and can be restricted to the
boundary as well as to one side of a discontinuity (the result will be
different depending on which side is chosen). Functions on any side of the
discontinuity can be seen as a function on the corresponding other side.

A function on the boundary or on one side of the discontinuity cannot be seen
as a general function on the domain as there are no values defined for the
interior. For most PDE solver libraries the space of the solution and
continuous functions is identical, however in some cases, for example when
periodic boundary conditions are used in \finley, a solution fulfills periodic
boundary conditions while a continuous function does not have to be periodic.

The concept of function spaces describes the properties of functions and
allows abstraction from the actual representation of the function in the
context of a particular application. For instance, in the FEM context a
function of the \Function type (written as \emph{Function()} in \fig{ESCRIPT DEP})
is usually represented by its values at the element center,
but in a finite difference scheme the edge midpoint of cells is preferred.
By changing its function space you can use the same function in a Finite
Difference scheme instead of Finite Element scheme.
Changing the function space of a particular function will typically lead to
a change of its representation.
So, when seen as a general function, a continuous function which is typically
represented by its values on the nodes of the FEM mesh or finite difference
grid must be interpolated to the element centers or the cell edges,
respectively. Interpolation happens automatically in \escript whenever it is
required\index{interpolation}. The user needs to be aware that an
interpolation is not always possible, see \fig{ESCRIPT DEP} for \finley.
An alternative approach to change the representation (=\FunctionSpace) is
projection\index{projection}, see \Sec{SEC Projection}.

\subsection{\Data Objects}
In \escript the class that stores these functions is called \Data.
The function is represented through its values on \DataSamplePoints where
the \DataSamplePoints are chosen according to the function space of the
function.
\Data class objects are used to define the coefficients of the PDEs to be
solved by a PDE solver library and also to store the solutions of the PDE.

The values of the function have a rank which gives the number of indices,
and a \Shape defining the range of each index.
The rank in \escript is limited to the range 0 through 4 and it is assumed
that the rank and \Shape is the same for all \DataSamplePoints.
The \Shape of a \Data object is a tuple (list) \var{s} of integers.
The length of \var{s} is the rank of the \Data object and the \var{i}-th
index ranges between 0 and $\var{s[i]}-1$.
For instance, a stress field has rank 2 and \Shape $(d,d)$ where $d$ is the
number of spatial dimensions.
The following statement creates the \Data object \var{mydat} representing a
continuous function with values of \Shape $(2,3)$ and rank $2$:
\begin{python}
  mydat=Data(value=1, what=ContinuousFunction(myDomain), shape=(2,3))
\end{python}
The initial value is the constant 1 for all \DataSamplePoints and all
components.

\Data objects can also be created from any \numpy array or any object, such
as a list of floating point numbers, that can be converted into
a \numpyNDA\cite{NUMPY}.
The following two statements create objects which are equivalent
to \var{mydat}:
\begin{python}
  mydat1=Data(value=numpy.ones((2,3)), what=ContinuousFunction(myDomain))
  mydat2=Data(value=[[1,1], [1,1], [1,1]], what=ContinuousFunction(myDomain))
\end{python}
In the first case the initial value is \var{numpy.ones((2,3))} which generates
a $2 \times 3$ matrix as an instance of \numpyNDA filled with ones.
The \Shape of the created \Data object is taken from the \Shape of the array.
In the second case, the creator converts the initial value, which is a list of
lists, into a \numpyNDA before creating the actual \Data object.

For convenience \escript provides creators for the most common types
of \Data objects in the following forms (\var{d} defines the spatial
dimensionality):
\begin{itemize}
\item \code{Scalar(0, Function(mydomain))} is the same as \code{Data(0, Function(myDomain),(,))}\\
    (each value is a scalar), e.g. a temperature field
\item \code{Vector(0, Function(mydomain))} is the same as \code{Data(0, Function(myDomain),(d,))}\\
    (each value is a vector), e.g. a velocity field
\item \code{Tensor(0, Function(mydomain))} equals \code{Data(0, Function(myDomain), (d,d))},
    e.g. a stress field
\item \code{Tensor4(0,Function(mydomain))} equals \code{Data(0,Function(myDomain), (d,d,d,d))},
    e.g. a Hook tensor field
\item \code{ComplexScalar(0+0j, Function(mydomain))} is the same as \\
    \code{ComplexData(0+0j, Function(myDomain),(,))}
    (each value is a complex scalar), e.g. a temperature field
\item \code{ComplexVector(0+0j, Function(mydomain))} is the same as \\
    \code{ComplexData(0+0j, Function(myDomain),(d,))}
    (each value is a complex vector), e.g. a velocity field
\item \code{ComplexTensor(0+0j, Function(mydomain))} is the same as \\
\code{ComplexData(0+0j, Function(myDomain), (d,d))}, e.g. a stress field
\item \code{ComplexTensor4(0+0j,Function(mydomain))} is the same as \\
\code{ComplexData(0+0j,Function(myDomain), (d,d,d,d))}, e.g. a Hook tensor field
\end{itemize}
Here the initial value is 0 but any object that can be converted into
a \numpyNDA and whose \Shape is consistent with \Shape of the \Data object to
be created can be used as the initial value.

\Data objects can be manipulated by applying unary operations (e.g. cos, sin,
log), and they can be combined point-wise by applying arithmetic operations
(e.g. +, - ,* , /).
We emphasize that \escript itself does not handle any spatial dependencies as
it does not know how values are interpreted by the processing PDE solver library.
However \escript invokes interpolation if this is needed during data manipulations.
Typically, this occurs in binary operations when the arguments belong to
different function spaces or when data are handed over to a PDE solver library
which requires functions to be represented in a particular way.

The following example shows the usage of \Data objects. Assume we have a
displacement field $u$ and we want to calculate the corresponding stress field
$\sigma$ using the linear-elastic isotropic material model
\begin{eqnarray}\label{eq: linear elastic stress}
\sigma_{ij}=\lambda u_{k,k} \delta_{ij} + \mu ( u_{i,j} + u_{j,i})
\end{eqnarray}
where $\delta_{ij}$ is the Kronecker symbol and
$\lambda$ and $\mu$ are the Lam\'e coefficients. The following function
takes the displacement \var{u} and the Lam\'e coefficients \var{lam} and \var{mu}
as arguments and returns the corresponding stress:
\begin{python}
  from esys.escript import *
  def getStress(u, lam, mu):
    d=u.getDomain().getDim()
    g=grad(u)
    stress=lam*trace(g)*kronecker(d)+mu*(g+transpose(g))
    return stress
\end{python}
The variable \var{d} gives the spatial dimensionality of the domain on which
the displacements are defined.
The \code{kronecker(d)} call, returns the Kronecker symbol with indices $i$ and $j$ running
from 0 to \var{d}-1.
The \var{grad(u)} call, requires the displacement field \var{u} to be in
the \var{Solution} or \ContinuousFunction.
The result \var{g} as well as the returned stress will be in the \Function.
If, for example, \var{u} is the solution of a PDE then \code{getStress} might
be called in the following way:
\begin{python}
  s=getStress(u, 1., 2.)
\end{python}
However \code{getStress} can also be called with \Data objects as values for
\var{lam} and \var{mu} which, for instance in the case of a temperature
dependency, are calculated by an expression.
The following call is equivalent to the previous example:
\begin{python}
  lam=Scalar(1., ContinuousFunction(mydomain))
  mu=Scalar(2., Function(mydomain))
  s=getStress(u, lam, mu)
\end{python}
%
The function \var{lam} belongs to the \ContinuousFunction but with \var{g} the
function \var{trace(g)} is in the \Function.
In the evaluation of the product \var{lam*trace(g)} we have different function
spaces (on the nodes versus in the centers) and at first glance we have incompatible data.
\escript converts the arguments into an appropriate function space according
to \fig{ESCRIPT DEP}.
In this example that means \escript sees \var{lam} as a function of the \Function.
In the context of FEM this means the nodal values of \var{lam} are
interpolated to the element centers.
The interpolation is automatic and requires no special handling.

\begin{figure}
\centering
\includegraphics{EscriptDiagram2}
\caption{\label{Figure: tag}Element Tagging. A rectangular mesh over a region
with two rock types {\it white} and {\it gray} is shown.
The number in each cell refers to the major rock type present in the cell
($1$ for {\it white} and $2$ for {\it gray}).}
\end{figure}

\subsection{Tagged, Expanded and Constant Data}
Material parameters such as the Lam\'e coefficients are typically dependent on
rock types present in the area of interest.
A common technique to handle these kinds of material parameters is
\emph{tagging}\index{tagging}, which uses storage efficiently.
\fig{Figure: tag} shows an example. In this case two rock types {\it white}
and {\it gray} can be found in the domain.
The domain is subdivided into triangular shaped cells.
Each cell has a tag indicating the rock type predominantly found in this cell.
Here $1$ is used to indicate rock type {\it white} and $2$ for rock type {\it gray}.
The tags are assigned at the time when the cells are generated and stored in
the \Domain class object. To allow easier usage of tags, names can be used
instead of numbers. These names are typically defined at the time when the
geometry is generated.

The following statements show how to use tagged values for \var{lam} as shown
in \fig{Figure: tag} for the stress calculation discussed above:
\begin{python}
  lam=Scalar(value=2., what=Function(mydomain))
  insertTaggedValue(lam, white=30., gray=5000.)
  s=getStress(u, lam, 2.)
\end{python}
In this example \var{lam} is set to $30$ for those cells with tag {\it white}
(=$1$) and to $5000$ for cells with tag {\it gray} (=$2$).
The initial value $2$ of \var{lam} is used as a default value for the case
when a tag is encountered which has not been linked with a value.
The \code{getStress} method does not need to be changed now that we are using tags.
\escript resolves the tags when \var{lam*trace(g)} is calculated.

This brings us to a very important point about \escript.
You can develop a simulation with constant Lam\'e coefficients, and then later
switch to tagged Lam\'e coefficients without otherwise changing your \PYTHON script.
In short, you can use the same script for models with different domains and
different types of input data.

There are three main ways in which \Data objects are represented internally --
constant, tagged, and expanded.
In the constant case, the same value is used at each sample point while only a
single value is stored to save memory.
In the expanded case, each sample point has an individual value (such as for the solution of a PDE).
This is where your largest data sets will be created because the values are
stored as a complete array.
The tagged case has already been discussed above.
Expanded data is created when specifying \code{expanded=True} in the \Data
object constructor, while tagged data requires calling the \member{insertTaggedValue}
method as shown above.

Values are accessed through a sample reference number.
Operations on expanded \Data objects have to be performed for each sample
point individually.
When tagged values are used, the values are held in a dictionary.
Operations on tagged data require processing the set of tagged values only,
rather than processing the value for each individual sample point.
\escript allows any mixture of constant, tagged and expanded data in a single expression.

\subsection{Saving and Restoring Simulation Data}
\Data objects can be written to disk files with the \member{dump} method and
read back using the \member{load} method, both of which use the
\netCDF\cite{NETCDF} file format.
Use these to save data for checkpoint/restart or simply to save and reuse data
that was expensive to compute.
For instance, to save the coordinates of the data points of a
\ContinuousFunction to the file \file{x.nc} use
\begin{python}
  x=ContinuousFunction(mydomain).getX()
  x.dump("x.nc")
  mydomain.dump("dom.nc")
\end{python}
To recover the object \var{x}, and you know that \var{mydomain} was an \finley
mesh, use
\begin{python}
  from esys.finley import LoadMesh
  mydomain=LoadMesh("dom.nc")
  x=load("x.nc", mydomain)
\end{python}
Obviously, it is possible to execute the same steps that were originally used
to generate \var{mydomain} to recreate it. However, in most cases using
\member{dump} and \member{load} is faster, particularly if optimization has
been applied.
If \escript is running on more than one \MPI process \member{dump} will create
an individual file for each process containing the local data.
In order to avoid conflicts the \MPI processor
rank is appended to the file names.
That is instead of one file \file{dom.nc} you would get
\file{dom.nc.0000}, \file{dom.nc.0001}, etc.
You still call \code{LoadMesh("dom.nc")} to load the domain but you have to
make sure that the appropriate file is accessible from the corresponding rank,
and loading will only succeed if you run with as many processes as were used
when calling \member{dump}.

The function space of the \Data is stored in \file{x.nc}.
If the \Data object is expanded, the number of data points in the file and of
the \Domain for the particular \FunctionSpace must match.
Moreover, the ordering of the values is checked using the reference
identifiers provided by the \FunctionSpace on the \Domain.
In some cases, data points will be reordered so be aware and confirm that you
get what you wanted.

A more flexible way of saving and restoring \escript simulation data
is through an instance of the \class{DataManager} class.
It has the advantage of allowing to save and load not only a \Domain and
\Data objects but also other values\footnote{The \PYTHON \emph{pickle} module
is used for other types.} you compute in your simulation script.
Further, \class{DataManager} objects can simultaneously create files for
visualization so no extra calls to \code{saveVTK} etc. are needed.

The following example shows how the \class{DataManager} class can be used.
For an explanation of all member functions and options see the class reference
Section \ref{sec:datamanager}.
\begin{python}
  from esys.escript import DataManager, Scalar, Function
  from esys.finley import Rectangle

  dm = DataManager(formats=[DataManager.RESTART, DataManager.VTK])
  if dm.hasData():
    mydomain=dm.getDomain()
    val=dm.getValue("val")
    t=dm.getValue("t")
    t_max=dm.getValue("t_max")
  else:
    mydomain=Rectangle()
    val=Function(mydomain).getX()
    t=0.
    t_max=2.5

  while t<t_max:
    t+=.01
    val=val+t/2
    dm.addData(val=val, t=t, t_max=t_max)
    dm.export()
\end{python}
In the constructor we specify that we want \code{RESTART} (i.e. dump) files
and \code{VTK} files to be saved.
By default, the constructor will look for previously saved \code{RESTART}
files under the current directory and load them.
We can then enquire if such files were found by calling the \member{hasData}
method. If it returns \True we retrieve the domain and values into local
variables. Otherwise the same variables are initialized with appropriate
values to start a new simulation.
Note, that \var{t} and \var{t_max} are regular floating point values and not
\Data objects. Yet they are treated the same way by the \class{DataManager}.

After this initialization step the script enters the main simulation loop
where calculations are performed.
When these are finalized for a time step we call the \member{addData} method
to let the manager know which variables to store on disk.
This does not actually save the data yet and it is allowed to call
\member{addData} more than once to add information incrementally, e.g. from
separate functions that have access to the \class{DataManager} instance.
Once all variables have been added the \member{export} method has to be called
to flush all data to disk and clear the manager.
In this example, this call dumps \var{mydomain} and \var{val} to files
in a restart directory and also stores \var{t} and \var{t_max} on disk.
Additionally, it generates a \VTK file for visualization of the data.
If the script would stop running before its completion for some reason (e.g.
because its runtime limit was exceeded in a batch job environment), you could
simply run it again and it would resume at the point it stopped before.

\section{\escript Classes}

\subsection{The \Domain class}
\begin{classdesc}{Domain}{}
A \Domain object is used to describe a geometric region together with
a way of representing functions over this region.
The \Domain class provides an abstract interface to the domain of \FunctionSpace and \Data objects.
\Domain needs to be subclassed in order to provide a complete implementation.
\end{classdesc}

\vspace{1em}\noindent The following methods are available:
\begin{methoddesc}[Domain]{getDim}{}
    returns the number of spatial dimensions of the \Domain.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{dump}{filename}
    writes the \Domain to the file \var{filename} using the \netCDF file format.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{getX}{}
    returns the locations in the \Domain. The \FunctionSpace of the returned
    \Data object is chosen by the \Domain implementation. Typically it will be
    in the \ContinuousFunction.
\end{methoddesc}

\begin{methoddesc}[Domain]{getNumpyX}{}
    returns the locations in the \Domain as a \numpy ndarray. The \FunctionSpace
    of the returned \Data object is chosen by the \Domain implementation.
    Typically it will be in the \ContinuousFunction.

    Note that it is necessary to load \numpy first in the escript.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{setX}{newX}
    assigns new locations to the \Domain. \var{newX} has to have \Shape $(d,)$
    where $d$ is the spatial dimensionality of the domain. Typically \var{newX}
    must be in the \ContinuousFunction but the space actually to be used
    depends on the \Domain implementation. Not all domain families support
    setting locations.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{getNormal}{}
    returns the surface normals on the boundary of the \Domain as a \Data object.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{getSize}{}
    returns the local sample size, i.e. the element diameter, as a \Data object.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{setTagMap}{tag_name, tag}
    defines a mapping of the tag name \var{tag_name} to the \var{tag}.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{getTag}{tag_name}
    returns the tag associated with the tag name \var{tag_name}.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{isValidTagName}{tag_name}
    returns \True if \var{tag_name} is a valid tag name.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{__eq__}{arg}
    (\PYTHON \var{==} operator) returns \True if the \Domain \var{arg}
    describes the same domain, \False otherwise.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{__ne__}{arg}
    (\PYTHON \var{!=} operator) returns \True if the \Domain \var{arg} does
    not describe the same domain, \False otherwise.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{__str__}{}
    (\PYTHON \var{str()} function) returns a string representation of the
    \Domain.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{onMasterProcessor}{}
    returns \True if the process is the master process within the \MPI
    process group used by the \Domain. This is the process with rank 0.
    If \MPI support is not enabled the return value is always \True.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{getMPISize}{}
    returns the number of \MPI processes used for this \Domain. If \MPI
    support is not enabled 1 is returned.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{getMPIRank}{}
    returns the rank of the process executing the statement within the
    \MPI process group used by the \Domain. If \MPI support is not enabled
    0 is returned.
\end{methoddesc}
%
\begin{methoddesc}[Domain]{MPIBarrier}{}
    executes barrier synchronization within the \MPI process group used by
    the \Domain. If \MPI support is not enabled, this command does nothing.
\end{methoddesc}

\subsection{The \FunctionSpace class}
\begin{classdesc}{FunctionSpace}{}
\FunctionSpace objects, which are instantiated by generator functions, are
used to define properties of \Data objects such as continuity.
A \Data object in a particular \FunctionSpace is represented by its values at
\DataSamplePoints which are defined by the type and the \Domain of the \FunctionSpace.
\end{classdesc}

\vspace{1em}\noindent The following methods are available:
%
\begin{methoddesc}[FunctionSpace]{getDim}{}
    returns the spatial dimensionality of the \Domain of the \FunctionSpace.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{getX}{}
    returns the location of the \DataSamplePoints.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{getNormal}{}
    If the domain of functions in the \FunctionSpace is a hyper-manifold (e.g.
    the boundary of a domain) the method returns the outer normal at each of
    the \DataSamplePoints. Otherwise an exception is raised.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{getSize}{}
    returns a \Data object measuring the spacing of the \DataSamplePoints.
    The size may be zero.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{getDomain}{}
    returns the \Domain of the \FunctionSpace.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{setTags}{new_tag, mask}
    assigns a new tag \var{new_tag} to all data samples where \var{mask} is
    positive for a least one data point.
    \var{mask} must be defined on this \FunctionSpace.
    Use the \var{setTagMap} to assign a tag name to \var{new_tag}.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{__eq__}{arg}
    (\PYTHON \var{==} operator) returns \True if the \FunctionSpace \var{arg}
    describes the same function space, \False otherwise.
\end{methoddesc}
%
\begin{methoddesc}[FunctionSpace]{__ne__}{arg}
    (\PYTHON \var{!=} operator) returns \True if the \FunctionSpace \var{arg}
    does not describe the same function space, \False otherwise.
\end{methoddesc}

\begin{methoddesc}[Domain]{__str__}{}
    (\PYTHON \var{str()} function) returns a string representation of the
    \FunctionSpace.
\end{methoddesc}

\noindent The following functions provide generators for \FunctionSpace objects:

\begin{funcdesc}{Function}{domain}
    returns the \Function on the \Domain \var{domain}. \Data objects in this
    type of \Function are defined over the whole geometric region defined by
    \var{domain}.
\end{funcdesc}
%
\begin{funcdesc}{ContinuousFunction}{domain}
    returns the \ContinuousFunction on the \Domain domain. \Data objects in
    this type of \Function are defined over the whole geometric region defined
    by \var{domain} and assumed to represent a continuous function.
\end{funcdesc}
%
\begin{funcdesc}{FunctionOnBoundary}{domain}
    returns the \FunctionOnBoundary on the \Domain domain. \Data objects in
    this type of \Function are defined on the boundary of the geometric region
    defined by \var{domain}.
\end{funcdesc}
%
\begin{funcdesc}{FunctionOnContactZero}{domain}
    returns the \FunctionOnContactZero the \Domain domain. \Data objects in
    this type of \Function are defined on side 0 of a discontinuity  within
    the geometric region defined by \var{domain}.
    The discontinuity is defined when \var{domain} is instantiated.
\end{funcdesc}
%
\begin{funcdesc}{FunctionOnContactOne}{domain}
    returns the \FunctionOnContactOne on the \Domain domain. \Data objects in
    this type of \Function are defined on side 1 of a discontinuity within
    the geometric region defined by \var{domain}.
    The discontinuity is defined when \var{domain} is instantiated.
\end{funcdesc}
%
\begin{funcdesc}{Solution}{domain}
    returns the \SolutionFS on the \Domain domain. \Data objects in this type
    of \Function are defined on the geometric region defined by \var{domain}
    and are solutions of partial differential equations\index{partial differential equation}.
\end{funcdesc}
%
\begin{funcdesc}{ReducedSolution}{domain}
    returns the \ReducedSolutionFS on the \Domain domain. \Data objects in
    this type of \Function are defined on the geometric region defined by
    \var{domain} and are solutions of partial differential
    equations\index{partial differential equation} with a reduced smoothness
    for the solution approximation.
\end{funcdesc}

\subsection{The \Data Class}
\label{SEC ESCRIPT DATA}

The following table shows arithmetic operations that can be performed
point-wise on \Data objects:
\begin{center}
    \begin{tabular}{l|l}
        \textbf{Expression} & \textbf{Description}\\
        \hline
        \code{+arg} & identical to \var{arg}\index{+}\\
        \code{-arg} & negation of \var{arg}\index{-}\\
        \code{arg0+arg1} & adds \var{arg0} and \var{arg1}\index{+}\\
        \code{arg0*arg1} & multiplies \var{arg0} and \var{arg1}\index{*}\\
        \code{arg0-arg1} & subtracts \var{arg1} from \var{arg0}\index{-}\\
        \code{arg0/arg1} & divides \var{arg0} by \var{arg1}\index{/}\\
        \code{arg0**arg1} & raises \var{arg0} to the power of \var{arg1}\index{**}\\
    \end{tabular}
\end{center}
At least one of the arguments \var{arg0} or \var{arg1} must be a \Data object.
Either of the arguments may be a \Data object, a \PYTHON number or a \numpy
object.
If \var{arg0} or \var{arg1} are not defined on the same \FunctionSpace, then
an attempt is made to convert \var{arg0} to the \FunctionSpace of \var{arg1}
or to convert \var{arg1} to \var{arg0}'s \FunctionSpace.
Both arguments must have the same \Shape or one of the arguments may be of
rank 0 (a constant).
The returned \Data object has the same \Shape and is defined on
the \DataSamplePoints as \var{arg0} or \var{arg1}.

The following table shows the update operations that can be applied to
\Data objects:
\begin{center}
    \begin{tabular}{l|l}
        \textbf{Expression} & \textbf{Description}\\
        \hline
        \code{arg0+=arg1} & adds \var{arg1} to \var{arg0}\index{+}\\
        \code{arg0*=arg1} & multiplies \var{arg0} by \var{arg1}\index{*}\\
        \code{arg0-=arg1} & subtracts \var{arg1} from\var{arg0}\index{-}\\
        \code{arg0/=arg1} & divides \var{arg0} by \var{arg1}\index{/}\\
        \code{arg0**=arg1} & raises \var{arg0} to the power of \var{arg1}\index{**}\\
    \end{tabular}
\end{center}
\var{arg0} must be a \Data object. \var{arg1} must be a \Data object or an
object that can be converted into a \Data object.
\var{arg1} must have the same \Shape as \var{arg0} or have rank 0.
In the latter case it is assumed that the values of \var{arg1} are constant
for all components. \var{arg1} must be defined in the same \FunctionSpace as
\var{arg0} or it must be possible to interpolate \var{arg1} onto the
\FunctionSpace of \var{arg0}.

The \Data class supports taking slices as well as assigning new values to a
slice of an existing \Data object\index{slicing}.
The following expressions for taking and setting slices are valid:
\begin{center}
    \begin{tabular}{l|ll}
        \textbf{Rank of \var{arg}} & \textbf{Slicing expression} & \textbf{\Shape of returned and assigned object}\\
        \hline
        0 & no slicing & N/A\\
        1 & \var{arg[l0:u0]} & (\var{u0}-\var{l0},)\\
        2 & \var{arg[l0:u0,l1:u1]} & (\var{u0}-\var{l0},\var{u1}-\var{l1})\\
        3 & \var{arg[l0:u0,l1:u1,l2:u2]} & (\var{u0}-\var{l0},\var{u1}-\var{l1},\var{u2}-\var{l2})\\
        4 & \var{arg[l0:u0,l1:u1,l2:u2,l3:u3]} & (\var{u0}-\var{l0},\var{u1}-\var{l1},\var{u2}-\var{l2},\var{u3}-\var{l3})\\
    \end{tabular}
\end{center}
Let \var{s} be the \Shape of \var{arg}, then
\begin{align*}
0 \le \var{l0} \le \var{u0} \le \var{s[0]},\\
0 \le \var{l1} \le \var{u1} \le \var{s[1]},\\
0 \le \var{l2} \le \var{u2} \le \var{s[2]},\\
0 \le \var{l3} \le \var{u3} \le \var{s[3]}.
\end{align*}
Any of the lower indexes \var{l0}, \var{l1}, \var{l2} and \var{l3} may not be
present in which case $0$ is assumed.
Any of the upper indexes \var{u0}, \var{u1}, \var{u2} and \var{u3} may be
omitted, in which case the upper limit for that dimension is assumed.
The lower and upper index may be identical in which case the column and the
lower or upper index may be dropped.
In the returned or in the object assigned to a slice, the corresponding
component is dropped, i.e. the rank is reduced by one in comparison to \var{arg}.
The following examples show slicing in action:
\begin{python}
  t=Data(1., (4,4,6,6), Function(mydomain))
  t[1,1,1,0]=9.
  s=t[:2,:,2:6,5] # s has rank 3
  s[:,:,1]=1.
  t[:2,:2,5,5]=s[2:4,1,:2]
\end{python}


\subsection{Generation of \Data objects}
\begin{classdesc}{Data}{value=0, shape=(,), what=FunctionSpace(), expanded=\False}
creates a \Data object with \Shape \var{shape} in the \FunctionSpace \var{what}.
The values at all \DataSamplePoints are set to the double value \var{value}.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{classdesc}

\begin{classdesc}{Data}{value, what=FunctionSpace(), expanded=\False}
creates a \Data object in the \FunctionSpace \var{what}.
The value for each data sample point is set to \var{value}, which could be a
\numpy object, \Data object or a dictionary of \numpy or floating point
numbers. In the latter case the keys must be integers and are used as tags.
The \Shape of the returned object is equal to the \Shape of \var{value}.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{classdesc}

\begin{classdesc}{Data}{}
creates an \EmptyData object. The \EmptyData object is used to indicate that
an argument is not present where a \Data object is required.
\end{classdesc}

\begin{funcdesc}{Scalar}{value=0., what=FunctionSpace(), expanded=\False}
returns a \Data object of rank 0 (a constant) in the \FunctionSpace \var{what}.
Values are initialized with \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{Vector}{value=0., what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{Tensor}{value=0., what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,d)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{Tensor3}{value=0., what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,d,d)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{Tensor4}{value=0., what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,d,d,d)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexData}{value, what=FunctionSpace(), expanded=\False}
creates a \Data object in the \FunctionSpace \var{what}.
The value for each data sample point is set to the complex value \var{value}, which could be a
\numpy object, \Data object or a dictionary of \numpy or floating point
numbers. In the latter case the keys must be integers and are used as tags.
The \Shape of the returned object is equal to the \Shape of \var{value}.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexData}{value=0, shape=(,), what=FunctionSpace(), expanded=\False}
creates a \Data object with \Shape \var{shape} in the \FunctionSpace \var{what}.
The values at all \DataSamplePoints are set to the complex value \var{value}.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexData}{}
creates an \EmptyData object with complex values (i.e. with memory allocated to
store a complex number). The \EmptyData object is used to indicate that
an argument is not present where a \Data object is required.
\end{funcdesc}

\begin{funcdesc}{ComplexScalar}{value=0.+0.j, what=FunctionSpace(), expanded=\False}
returns a \Data object of rank 0 (a constant) in the \FunctionSpace \var{what}.
Values are initialized with complex \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexData}{value=0.+0.j, what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with complex \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexTensor}{value=0.+0.j, what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,d)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with complex \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexTensor3}{value=0.+0.j, what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,d,d)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with complex \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{ComplexTensor4}{value=0.+0.j, what=FunctionSpace(), expanded=\False}
returns a \Data object of \Shape \var{(d,d,d,d)} in the \FunctionSpace \var{what},
where \var{d} is the spatial dimension of the \Domain of \var{what}.
Values are initialized with complex \var{value}, a double precision quantity.
If \var{expanded} is \True the \Data object is represented in expanded form.
\end{funcdesc}

\begin{funcdesc}{load}{filename, domain}
recovers a \Data object on \Domain \var{domain} from the file \var{filename},
which was created by \function{dump}.
\end{funcdesc}

\subsection{Generating random \Data objects}
A \Data object filled with random values can be produced using the
\function{RandomData} function.
By default values are drawn uniformly at random from the interval $[0,1]$ (i.e.
including end points).
The function takes a shape for the data points and a \FunctionSpace for the new
\Data as arguments.
For example:
\begin{python}
from esys.finley import *
from esys.escript import *

domain=Rectangle(11,11)
fs=ContinuousFunction(domain)
d=RandomData((), fs)
\end{python}
would result in \var{d} being filled with scalar random data since \texttt{()}
is an empty tuple.

\begin{python}
from esys.finley import *
from esys.escript import *

domain=Rectangle(11,11)
fs=ContinuousFunction(domain)
d=RandomData((2,2), fs)
\end{python}
would give \var{d} the same number of data points, but each point would be a
$2\times 2$ matrix instead of a scalar.

By default, the seed used to generate the random values will be different each
time.
If required, you can specify a seed to ensure the same sequence is produced.
\begin{python}
from esys.dudley import *
from esys.escript import *

seed=-17171717
domain=Brick(10,10,10)
fs=Function(domain)
d=RandomData((2,2), fs, seed)
\end{python}

The \var{seed} can be any integer value\footnote{which can be converted to a
C++ long} but 0 is special.
A seed of zero will cause \escript to use a different seed each time.
Also, note that the mechanism used to produce the random values could be
different in different releases.

\noindent\textbf{Note for MPI users:}
\textsl{
Even if you specify a seed, you will only get the same results if you are running with the same
number of ranks.
If you change the number of ranks, you will get different values for the same seed.
}

\subsubsection{Smoothed randoms}
The \ripley domains (see Chapter \ref{chap:ripley}) support generating random
scalars which are smoothed using Gaussian blur.
To use this, you need to supply the radius of the filter kernel (in elements)
and the \var{sigma} value used in the filter.
For example:
\begin{python}
from esys.ripley import *
from esys.escript import *

fs=ContinuousFunction(Rectangle(11,11, d1=2,d0=2))
d=RandomData((), fs, 0, ('gaussian', 1, 0.5))
\end{python}
will use a filter that uses the immediate neighbours of each point with a sigma
value of $0.5$.
The random values will be different each time this code is executed due to the
seed of $0$.

Ripley's Gaussian smoothing has the following requirements:
\begin{enumerate}
    \item If \MPI is in use, then each rank must have at least $5$ elements in
          it \emph{in each dimension}. This value increases as the radius of
          the blur increases.
    \item The data being generated must be scalar. (You can generate random
          data objects for \ripley domains with whatever shape you require, you
          just can't smooth them unless that shape is scalar).
\end{enumerate}
An exception will be raised if either of these requirements is not met.

The components of the matrix used in the kernal for the 2D case are
defined\cite{gaussfilter} by:

\[ G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

\noindent For the 3D case, we use:

\[ G(x,y) = \frac{1}{(\sqrt{2\pi\sigma^2})^3} e^{-\frac{x^2+y^2+z^2}{2\sigma^2}} \]

All distances ($x$,$y$,$z$) refer to the number of points from the centre point.
That is, the closest neighbours have at least one distance of $1$, the next
``ring'' of neighbours have at least one $2$ and so on.
The matrix is normalised before use.

\subsection{\Data methods}
These are the most frequently used methods of the \Data class.
A complete list of methods can be found in the reference guide,
see \ReferenceGuide.

\begin{methoddesc}[Data]{getFunctionSpace}{}
returns the \FunctionSpace of the object.
\end{methoddesc}

\begin{methoddesc}[Data]{getDomain}{}
returns the \Domain of the object.
\end{methoddesc}

\begin{methoddesc}[Data]{getShape}{}
returns the \Shape of the object as a \class{tuple} of integers.
\end{methoddesc}

\begin{methoddesc}[Data]{getRank}{}
returns the rank of the data on each data point\index{rank}.
\end{methoddesc}

\begin{methoddesc}[Data]{isEmpty}{}
returns \True if the \Data object is the \EmptyData object, \False otherwise.
Note that this is not the same as asking if the object contains no \DataSamplePoints.
\end{methoddesc}

\begin{methoddesc}[Data]{setTaggedValue}{tag_name, value}
assigns the \var{value} to all \DataSamplePoints which have the tag
assigned to \var{tag_name}. \var{value} must be an object of class
\class{numpy.ndarray} or must be convertible into a \class{numpy.ndarray} object.
\var{value} (or the corresponding \class{numpy.ndarray} object) must be of
rank $0$ or must have the same rank as the object.
If a value has already been defined for tag \var{tag_name} within the object
it is overwritten by the new \var{value}. If the object is expanded,
the value assigned to \DataSamplePoints with tag \var{tag_name} is replaced by
\var{value}. If no value is assigned the tag name \var{tag_name}, no value is set.
\end{methoddesc}

\begin{methoddesc}[Data]{dump}{filename}
dumps the \Data object to the file \var{filename}. The file stores the
function space but not the \Domain. It is the responsibility of the user to
save the \Domain in order to be able to recover the \Data object.
\end{methoddesc}

\begin{methoddesc}[Data]{__str__}{}
returns a string representation of the object.
\end{methoddesc}

\subsection{Functions of \Data objects}
This section lists the most important functions for \Data class objects.
A complete list and a more detailed description of the functionality can be
found on \ReferenceGuide.

\begin{funcdesc}{kronecker}{d}
returns a \RankTwo in \FunctionSpace \var{d} such that
\begin{equation}
\code{kronecker(d)}\left[ i,j\right] = \left\{
\begin{array}{l l}
    1 & \quad \text{if $i=j$}\\
    0 & \quad \text{otherwise}
\end{array}
\right.
\end{equation}
If \var{d} is an integer a $(d,d)$ \numpy array is returned.
\end{funcdesc}

\begin{funcdesc}{identityTensor}{d}
is a synonym for \code{kronecker} (see above).
\end{funcdesc}

\begin{funcdesc}{identityTensor4}{d}
returns a \RankFour in \FunctionSpace \var{d} such that
\begin{equation}
\code{identityTensor(d)}\left[ i,j,k,l\right] = \left\{
\begin{array}{l l}
    1 & \quad \text{if $i=k$ and $j=l$}\\
    0 & \quad \text{otherwise}
\end{array}
\right.
\end{equation}
If \var{d} is an integer a $(d,d,d,d)$ \numpy array is returned.
\end{funcdesc}

\begin{funcdesc}{unitVector}{i,d}
returns a \RankOne in \FunctionSpace \var{d} such that
\begin{equation}
\code{identityTensor(d)}\left[ j \right] = \left\{
\begin{array}{l l}
    1 & \quad \text{if $j=i$}\\
    0 & \quad \text{otherwise}
\end{array}
\right.
\end{equation}
If \var{d} is an integer a $(d,)$ \numpy array is returned.
\end{funcdesc}

\begin{funcdesc}{Lsup}{a}
returns the $L^{sup}$ norm of \var{arg}. This is the maximum of the absolute
values over all components and all \DataSamplePoints of \var{a}.
\end{funcdesc}

\begin{funcdesc}{sup}{a}
returns the maximum value over all components and all \DataSamplePoints of \var{a}.
\end{funcdesc}

\begin{funcdesc}{inf}{a}
returns the minimum value over all components and all \DataSamplePoints of \var{a}
\end{funcdesc}

\begin{funcdesc}{minval}{a}
returns at each data sample point the minimum value over all components.
\end{funcdesc}

\begin{funcdesc}{maxval}{a}
returns at each data sample point the maximum value over all components.
\end{funcdesc}

\begin{funcdesc}{length}{a}
returns the Euclidean norm at each data sample point.
For a \RankFour \var{a} this is
\begin{equation}
\code{length(a)}=\sqrt{\sum_{ijkl} \var{a} \left[i,j,k,l\right]^2}
\end{equation}
\end{funcdesc}

\begin{funcdesc}{trace}{a\optional{, axis_offset=0}}
returns the trace of \var{a}. This is the sum over components \var{axis_offset}
and \var{axis_offset+1} with the same index.
For instance, in the case of a \RankTwo this is
\begin{equation}
\code{trace(a)}=\sum_{i} \var{a} \left[i,i\right]
\end{equation}
and for a \RankFour and \code{axis_offset=1} this is
\begin{equation}
\code{trace(a,1)}\left[i,j\right]=\sum_{k} \var{a} \left[i,k,k,j\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{transpose}{a\optional{, axis_offset=None}}
returns the transpose of \var{a}. This swaps the first \var{axis_offset}
components of \var{a} with the rest. If \var{axis_offset} is not
present \code{int(r/2)} is used where \var{r} is the rank of \var{a}.
For instance, in the case of a \RankTwo this is
\begin{equation}
\code{transpose(a)}\left[i,j\right]=\var{a} \left[j,i\right]
\end{equation}
and for a \RankFour and \code{axis_offset=1} this is
\begin{equation}
\code{transpose(a,1)}\left[i,j,k,l\right]=\var{a} \left[j,k,l,i\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{swap_axes}{a\optional{, axis0=0 \optional{, axis1=1 }}}
returns \var{a} but with swapped components \var{axis0} and \var{axis1}.
The argument \var{a} must be at least of rank 2. For instance, if \var{a}
is a \RankFour, \code{axis0=1} and \code{axis1=2}, the result is
\begin{equation}
\code{swap_axes(a,1,2)}\left[i,j,k,l\right]=\var{a} \left[i,k,j,l\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{symmetric}{a}
returns the symmetric part of \var{a}. This is \code{(a+transpose(a))/2}.
\end{funcdesc}

\begin{funcdesc}{nonsymmetric}{a}
returns the non-symmetric part of \var{a}. This is \code{(a-transpose(a))/2}.
\end{funcdesc}

\begin{funcdesc}{inverse}{a}
return the inverse of \var{a} so that
\begin{equation}
\code{matrix_mult(inverse(a),a)=kronecker(d)}
\end{equation}
if \var{a} has shape \code{(d,d)}. The current implementation is restricted to
arguments of shape \code{(2,2)} and \code{(3,3)}.
\end{funcdesc}

\begin{funcdesc}{eigenvalues}{a}
returns the eigenvalues of \var{a} so that
\begin{equation}
\code{matrix_mult(a,V)=e[i]*V}
\end{equation}
where \code{e=eigenvalues(a)} and \var{V} is a suitable non-zero vector.
The eigenvalues are ordered in increasing size.
The argument \var{a} has to be symmetric, i.e. \code{a=symmetric(a)}.
The current implementation is restricted to arguments of shape \code{(2,2)}
and \code{(3,3)}.
\end{funcdesc}

\begin{funcdesc}{eigenvalues_and_eigenvectors}{a}
returns the eigenvalues and eigenvectors of \var{a}.
\begin{equation}
\code{matrix_mult(a,V[:,i])=e[i]*V[:,i]}
\end{equation}
where \code{e,V=eigenvalues_and_eigenvectors(a)}. The eigenvectors \var{V} are
orthogonal and normalized, i.e.
\begin{equation}
\code{matrix_mult(transpose(V),V)=kronecker(d)}
\end{equation}
if \var{a} has shape \code{(d,d)}. The eigenvalues are ordered in increasing
size. The argument \var{a} has to be the symmetric, i.e. \code{a=symmetric(a)}.
The current implementation is restricted to arguments of shape \code{(2,2)}
and \code{(3,3)}.
\end{funcdesc}

\begin{funcdesc}{maximum}{*a}
returns the maximum value over all arguments at all \DataSamplePoints and for each component.
\begin{equation}
\code{maximum(a0,a1)}\left[i,j\right]=max(\var{a0} \left[i,j\right],\var{a1} \left[i,j\right])
\end{equation}
at all \DataSamplePoints.
\end{funcdesc}

\begin{funcdesc}{minimum}{*a}
returns the minimum value over all arguments at all \DataSamplePoints and for each component.
\begin{equation}
\code{minimum(a0,a1)}\left[i,j\right]=min(\var{a0} \left[i,j\right],\var{a1} \left[i,j\right])
\end{equation}
at all \DataSamplePoints.
\end{funcdesc}

\begin{funcdesc}{clip}{a\optional{, minval=0.}\optional{, maxval=1.}}
cuts back \var{a} into the range between \var{minval} and \var{maxval}.
A value in the returned object equals \var{minval} if the corresponding value
of \var{a} is less than \var{minval}, equals \var{maxval} if the corresponding
value of \var{a} is greater than \var{maxval}, or corresponding value of
\var{a} otherwise.
\end{funcdesc}

\begin{funcdesc}{inner}{a0, a1}
returns the inner product of \var{a0} and \var{a1}. For instance in the
case of a \RankTwo:
\begin{equation}
\code{inner(a)}=\sum_{ij}\var{a0} \left[j,i\right]  \cdot \var{a1} \left[j,i\right]
\end{equation}
and for a \RankFour:
\begin{equation}
\code{inner(a)}=\sum_{ijkl}\var{a0} \left[i,j,k,l\right]  \cdot \var{a1} \left[j,i,k,l\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{matrix_mult}{a0, a1}
returns the matrix product of \var{a0} and \var{a1}.
If \var{a1} is a \RankOne this is
\begin{equation}
\code{matrix_mult(a)}\left[i\right]=\sum_{k}\var{a0}  \cdot \left[i,k\right]\var{a1} \left[k\right]
\end{equation}
and if \var{a1} is a \RankTwo this is
\begin{equation}
\code{matrix_mult(a)}\left[i,j\right]=\sum_{k}\var{a0}  \cdot \left[i,k\right]\var{a1} \left[k,j\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{transposed_matrix_mult}{a0, a1}
returns the matrix product of the transposed of \var{a0} and \var{a1}.
The function is equivalent to \code{matrix_mult(transpose(a0),a1)}.
If \var{a1} is a \RankOne this is
\begin{equation}
\code{transposed_matrix_mult(a)}\left[i\right]=\sum_{k}\var{a0}  \cdot \left[k,i\right]\var{a1} \left[k\right]
\end{equation}
and if \var{a1} is a \RankTwo this is
\begin{equation}
\code{transposed_matrix_mult(a)}\left[i,j\right]=\sum_{k}\var{a0}  \cdot \left[k,i\right]\var{a1} \left[k,j\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{matrix_transposed_mult}{a0, a1}
returns the matrix product of \var{a0} and the transposed of \var{a1}.
The function is equivalent to \code{matrix_mult(a0,transpose(a1))}.
If \var{a1} is a \RankTwo this is
\begin{equation}
\code{matrix_transposed_mult(a)}\left[i,j\right]=\sum_{k}\var{a0}  \cdot \left[i,k\right]\var{a1} \left[j,k\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{outer}{a0, a1}
returns the outer product of \var{a0} and \var{a1}.
For instance, if both, \var{a0} and \var{a1} is a \RankOne then
\begin{equation}
\code{outer(a)}\left[i,j\right]=\var{a0} \left[i\right]  \cdot  \var{a1}\left[j\right]
\end{equation}
and if \var{a0} is a \RankOne and \var{a1} is a \RankThree:
\begin{equation}
\code{outer(a)}\left[i,j,k\right]=\var{a0} \left[i\right] \cdot \var{a1}\left[j,k\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{tensor_mult}{a0, a1}
returns the tensor product of \var{a0} and \var{a1}.
If \var{a1} is a \RankTwo this is
\begin{equation}
\code{tensor_mult(a)}\left[i,j\right]=\sum_{kl}\var{a0}\left[i,j,k,l\right] \cdot \var{a1} \left[k,l\right]
\end{equation}
and if \var{a1} is a \RankFour this is
\begin{equation}
\code{tensor_mult(a)}\left[i,j,k,l\right]=\sum_{mn}\var{a0} \left[i,j,m,n\right] \cdot \var{a1} \left[m,n,k,l\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{transposed_tensor_mult}{a0, a1}
returns the tensor product of the transposed of \var{a0} and \var{a1}.
The function is equivalent to \code{tensor_mult(transpose(a0),a1)}.
If \var{a1} is a \RankTwo this is
\begin{equation}
\code{transposed_tensor_mult(a)}\left[i,j\right]=\sum_{kl}\var{a0}\left[k,l,i,j\right] \cdot \var{a1} \left[k,l\right]
\end{equation}
and if \var{a1} is a \RankFour this is
\begin{equation}
\code{transposed_tensor_mult(a)}\left[i,j,k,l\right]=\sum_{mn}\var{a0} \left[m,n,i,j\right] \cdot \var{a1} \left[m,n,k,l\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{tensor_transposed_mult}{a0, a1}
returns the tensor product of \var{a0} and the transposed of \var{a1}.
The function is equivalent to \code{tensor_mult(a0,transpose(a1))}.
If \var{a1} is a \RankTwo this is
\begin{equation}
\code{tensor_transposed_mult(a)}\left[i,j\right]=\sum_{kl}\var{a0}\left[i,j,k,l\right] \cdot \var{a1} \left[l,k\right]
\end{equation}
and if \var{a1} is a \RankFour this is
\begin{equation}
\code{tensor_transposed_mult(a)}\left[i,j,k,l\right]=\sum_{mn}\var{a0} \left[i,j,m,n\right] \cdot \var{a1} \left[k,l,m,n\right]
\end{equation}
\end{funcdesc}

\begin{funcdesc}{grad}{a\optional{, where=None}}
returns the gradient of \var{a}. If \var{where} is present the gradient will
be calculated in the \FunctionSpace \var{where}, otherwise a default
\FunctionSpace is used. In case that \var{a} is a \RankTwo one has
\begin{equation}
\code{grad(a)}\left[i,j,k\right]=\frac{\partial \var{a} \left[i,j\right]}{\partial x_{k}}
\end{equation}
\end{funcdesc}

\begin{funcdesc}{integrate}{a\optional{, where=None}}
returns the integral of \var{a} where the domain of integration is defined by
the \FunctionSpace of \var{a}. If \var{where} is present the argument is
interpolated into \FunctionSpace \var{where} before integration.
For instance in the case of a \RankTwo in \ContinuousFunction it is
\begin{equation}
\code{integrate(a)}\left[i,j\right]=\int_{\Omega}\var{a} \left[i,j\right] \; d\Omega
\end{equation}
where $\Omega$ is the spatial domain and $d\Omega$ volume integration.
To integrate over the boundary of the domain one uses
\begin{equation}
\code{integrate(a,where=FunctionOnBoundary(a.getDomain))}\left[i,j\right]=\int_{\partial \Omega} a\left[i,j\right] \; ds
\end{equation}
where $\partial \Omega$ is the surface of the spatial domain and $ds$ area or
line integration.
\end{funcdesc}

\begin{funcdesc}{interpolate}{a, where}
interpolates argument \var{a} into the \FunctionSpace \var{where}.
\end{funcdesc}

\begin{funcdesc}{div}{a\optional{, where=None}}
returns the divergence of \var{a}:
\begin{equation}
    \code{div(a)=trace(grad(a),where)}
\end{equation}
\end{funcdesc}

\begin{funcdesc}{jump}{a\optional{, domain=None}}
returns the jump of \var{a} over the discontinuity in its domain or if
\Domain \var{domain} is present in \var{domain}.
\begin{equation}
\begin{array}{rcl}
\code{jump(a)}& = &\code{interpolate(a,FunctionOnContactOne(domain))} \\
              &   & \hfill - \code{interpolate(a,FunctionOnContactZero(domain))}
\end{array}
\end{equation}
\end{funcdesc}

\begin{funcdesc}{L2}{a}
returns the $L^2$-norm of \var{a} in its \FunctionSpace. This is
\begin{equation}
\code{L2(a)=integrate(length(a)}^2\code{)} \; .
\end{equation}
\end{funcdesc}

\noindent The following functions operate ``point-wise''.
That is, the operation is applied to each component of each point individually.

\begin{funcdesc}{sin}{a}
applies the sine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{cos}{a}
applies the cosine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{tan}{a}
applies the tangent function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{asin}{a}
applies the arc (inverse) sine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{acos}{a}
applies the arc (inverse) cosine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{atan}{a}
applies the arc (inverse) tangent function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{sinh}{a}
applies the hyperbolic sine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{cosh}{a}
applies the hyperbolic cosine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{tanh}{a}
applies the hyperbolic tangent function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{asinh}{a}
applies the arc (inverse) hyperbolic sine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{acosh}{a}
applies the arc (inverse) hyperbolic cosine function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{atanh}{a}
applies the arc (inverse) hyperbolic tangent function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{exp}{a}
applies the exponential function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{sqrt}{a}
applies the square root function to \var{a}.
\end{funcdesc}

\begin{funcdesc}{log}{a}
takes the natural logarithm of \var{a}.
\end{funcdesc}

\begin{funcdesc}{log10}{a}
takes the base-$10$ logarithm of \var{a}.
\end{funcdesc}

\begin{funcdesc}{sign}{a}
applies the sign function to \var{a}. The result is $1$ where \var{a} is
positive, $-1$ where \var{a} is negative, and $0$ otherwise.
\end{funcdesc}

\begin{funcdesc}{wherePositive}{a}
returns a function which is $1$ where \var{a} is positive and $0$ otherwise.
\end{funcdesc}

\begin{funcdesc}{whereNegative}{a}
returns a function which is $1$ where \var{a} is negative and $0$ otherwise.
\end{funcdesc}

\begin{funcdesc}{whereNonNegative}{a}
returns a function which is $1$ where \var{a} is non-negative and $0$ otherwise.
\end{funcdesc}

\begin{funcdesc}{whereNonPositive}{a}
returns a function which is $1$ where \var{a} is non-positive and $0$ otherwise.
\end{funcdesc}

\begin{funcdesc}{whereZero}{a\optional{, tol=None\optional{, rtol=1.e-8}}}
returns a function which is $1$ where \var{a} equals zero with tolerance
\var{tol} and $0$ otherwise. If \var{tol} is not present, the absolute maximum
value of \var{a} times \var{rtol} is used.
\end{funcdesc}

\begin{funcdesc}{whereNonZero}{a\optional{, tol=None\optional{, rtol=1.e-8}}}
returns a function which is $1$ where \var{a} is non-zero with tolerance
\var{tol} and $0$ otherwise. If \var{tol} is not present, the absolute maximum
value of \var{a} times \var{rtol} is used.
\end{funcdesc}

\subsection{Interpolating Data}
\index{interpolateTable}
\label{sec:interpolation}
In some cases, it may be useful to produce Data objects which fit some user
defined function.
Manually modifying each value in the Data object is not a good idea since it
depends on knowing the location and order of each data point in the domain.
Instead, \escript can use an interpolation table to produce a \Data object.

The following example is available as \file{int_save.py} in the \ExampleDirectory.
We will produce a \Data object which approximates a sine curve.

\begin{python}
  from esys.escript import saveDataCSV, sup, interpolateTable
  import numpy
  from esys.finley import Rectangle

  n=4
  r=Rectangle(n,n)
  x=r.getX()
  toobig=100
\end{python}

\noindent First we produce an interpolation table:
\begin{python}
  sine_table=[0, 0.70710678118654746, 1, 0.70710678118654746, 0,
             -0.70710678118654746, -1, -0.70710678118654746, 0]
\end{python}
%
We wish to identify $0$ and $1$ with the ends of the curve, that is
with the first and eighth value in the table.

\begin{python}
  numslices=len(sine_table)-1
  minval=0.
  maxval=1.
  step=sup(maxval-minval)/numslices
\end{python}
%
So the values $v$ from the input lie in the interval
\var{minval} $\leq v <$ \var{maxval}.
\var{step} represents the gap (in the input range) between entries in the table.
By default, values of $v$ outside the table argument range (minval, maxval)
will be pushed back into the range, i.e. if $v <$ \var{minval} the value
\var{minval} will be used to evaluate the table.
Similarly, for values $v>$ \var{maxval} the value \var{maxval} is used.

Now we produce our new \Data object:

\begin{python}
  result=interpolateTable(sine_table, x[0], minval, step, toobig)
\end{python}
Any values which interpolate to larger than \var{toobig} will raise an
exception. You can switch on boundary checking by adding
\code{check_boundaries=True} to the argument list.

Now consider a 2D example. We will interpolate from a plane where $\forall x,y\in[0,9]:(x,y)=x+y\cdot10$.

\begin{python}
from esys.escript import whereZero
table2=[]
for y in range(0,10):
      r=[]
      for x in range(0,10):
	 r.append(x+y*10)
      table2.append(r)
xstep=(maxval-minval)/(10-1)
ystep=(maxval-minval)/(10-1)

xmin=minval
ymin=minval

result2=interpolateTable(table2, x2, (xmin, ymin), (xstep, ystep), toobig)
\end{python}

We can check the values using \function{whereZero}.
For example, for $x=0$:
\begin{python}
print(result2*whereZero(x[0]))
\end{python}

Finally let us look at a 3D example. Note that the parameter tuples should be
$(x,y,z)$ but that in the interpolation table, $x$ is the innermost dimension.
\begin{python}
b=Brick(n,n,n)
x3=b.getX()
toobig=1000000

table3=[]
for z in range(0,10):
   face=[]
   for y in range(0,10):
      r=[]
      for x in range(0,10):
	 r.append(x+y*10+z*100)
      face.append(r)
   table3.append(face);

zstep=(maxval-minval)/(10-1)

zmin=minval

result3=interpolateTable(table3, x3, (xmin, ymin, zmin),
    (xstep, ystep, zstep), toobig)
\end{python}


\subsubsection{Non-uniform Interpolation}
Non-uniform interpolation is also supported for the one dimensional case.
\begin{python}
Data.nonuniformInterpolate(in, out, check_boundaries)
Data.nonuniformSlope(in, out, check_boundaries)
\end{python}

Will produce a new \Data object by mapping the given \Data object through the user-defined function
specified by \texttt{in} and \texttt{out}.
The \ldots Interpolate version gives the value of the function at the specified point and the
\ldots Slope version gives the slope at those points.
The check_boundaries boolean argument specifies what the function should do if the \Data object contains
values outside the range specified by the \texttt{in} parameter.
If the argument is \texttt{False}, then those datapoints will be interpolated to the value of the edge
they are closest to (or assigned a slope of zero).
If the argument is \texttt{True}, then an exception will be thrown if out of bounds values are detected.
Note that the values given by the \texttt{in} parameter must be monotonically increasing.

\noindent For example:\\
If \texttt{d} contains the values \texttt{\{1,2,3,4,5\}}, then
\begin{python}
d.nonuniformInterpolate([1.5, 2, 2.8, 4.6], [4, 5, -1, 1], False)
\end{python}
would produce a \Data object containing \texttt{\{4, 5, -0.7777, 0.3333, 1\}}.\\
A similar call to \texttt{nonuniformSlope} would produce a \Data object containing \texttt{\{0, 2, 1.1111, 1.1111, 0\}}.
%
%
% We will interpolate a surface such that the bottom
% edge is the sine curve described above.
% The amplitude of the curve decreases as we move towards the top edge.
% Our interpolation table will have three rows:
%
% \begin{python}
%   st=numpy.array(sine_table)
%   table=[st, 0.5*st, 0*st]
% \end{python}
% %
% The use of \numpy and multiplication here is just to save typing.
%
% %  result2=x1.interpolateTable(table, 0, 0.55, x0, minval, step, toobig)
% \begin{python}
%   result=interpolateTable(table, x (minval,0), (0.55, step), toobig)
% \end{python}
%
% In the 2D case the start and step parameters are tuples $(x,y)$.
% By default, if a point is specified which is outside the boundary, then
% \var{interpolateTable} will operate as if the point was on the boundary.
% Passing \code{check_boundaries=True} will lead to the rejection of any points
% outside the boundaries by \var{interpolateTable}.
%
% This method can also be called with three dimensional tables and \Data objects.
% Tuples should be ordered $(x,y,z)$.

\subsection{The \var{DataManager} Class}
\label{sec:datamanager}

The \var{DataManager} class can be used to conveniently add checkpoint/restart
functionality to \escript simulations.
Once an instance is created \Data objects and other values can be added and
dumped to disk by a single method call.
If required the object can be set up to also save the data in a format suitable
for visualization.
Internally the \var{DataManager} interfaces with \weipa for this.

\begin{classdesc}{DataManager}{formats=[RESTART], work_dir=".", restart_prefix="restart", do_restart=\True}
    initializes a new \var{DataManager} object which can be used to save,
    restore and export simulation data in a number of formats.
    All files and directories saved or restored by this object are located
    under the directory specified by \var{work_dir}.
    If \var{RESTART} is specified in \var{formats}, the \var{DataManager} will
    look for directories whose name starts with \var{restart_prefix}.
    In case \var{do_restart} is \True, the last of these directories is used
    to restore simulation data while all others are deleted.
    If \var{do_restart} is \False, then all of those directories are deleted.
    The \var{restart_prefix} and \var{do_restart} parameters are ignored if
    \var{RESTART} is not specified in \var{formats}.
\end{classdesc}

\noindent Valid values for the \var{formats} parameter are:
\begin{memberdesc}[DataManager]{RESTART}
    enables writing of checkpoint files to be able to continue simulations
    as explained in the class description.
\end{memberdesc}
\begin{memberdesc}[DataManager]{SILO}
    exports simulation data in the \SILO file format. \escript must have
    been compiled with \SILO support for this to work.
\end{memberdesc}
\begin{memberdesc}[DataManager]{VISIT}
    enables the \VisIt simulation interface which allows connecting to and
    interacting with the running simulation from a compatible \VisIt client.
    \escript must have been compiled with \VisIt (version 2) support and the
    version of the client has to match the version used at compile time.
    In order to connect to the simulation the client needs to have access and
    load the file \file{escriptsim.sim2} located under the work directory.
\end{memberdesc}
\begin{memberdesc}[DataManager]{VTK}
    exports simulation data in the \VTK file format.
\end{memberdesc}

\noindent The \var{DataManager} class has the following methods:
\begin{methoddesc}[DataManager]{addData}{**data}
    adds \Data objects and other data to the manager. Calling this method does
    not save or export the data yet so it is allowed to incrementally add data
    at various points in the simulation script if required.
    Note, that only a single domain is supported so all \Data objects have to
    be defined on the same one or an exception is raised.
\end{methoddesc}

\begin{methoddesc}[DataManager]{setDomain}{domain}
    explicitly sets the domain for this manager.
    It is generally not required to call this method directly.
    Instead, the \var{addData} method will set the domain used by the \Data
    objects.
    An exception is raised if the domain was set to a different domain before
    (explicitly or implicitly).
\end{methoddesc}

\begin{methoddesc}[DataManager]{hasData}{}
    returns \True if the manager has loaded simulation data for a restart.
\end{methoddesc}

\begin{methoddesc}[DataManager]{getDomain}{}
    returns the domain as recovered from a restart.
\end{methoddesc}

\begin{methoddesc}[DataManager]{getValue}{value_name}
    returns a \Data object or other value with the name \var{value_name} that
    has been recovered after a restart.
\end{methoddesc}

\begin{methoddesc}[DataManager]{getCycle}{}
    returns the export cycle, i.e. the number of times \var{export()} has been
    called.
\end{methoddesc}

\begin{methoddesc}[DataManager]{setCheckpointFrequency}{freq}
    sets the frequency with which checkpoint files are created. This is only
    useful if the \var{DataManager} object was created with at least one other
    format next to \var{RESTART}. The frequency is 1 by default which means
    that checkpoint files are created every time \var{export()} is called.
    Unlike visualization output, a simulation checkpoint is usually not
    required at every time step. Thus, the frequency can be decreased by
    calling this method with $\var{freq}>1$ which would then create restart
    files every \var{freq} times \var{export()} is called.
\end{methoddesc}

\begin{methoddesc}[DataManager]{setTime}{time}
    sets the simulation time stamp. This floating point number is stored in
    the metadata of exported data but not used by \var{RESTART}.
\end{methoddesc}

\begin{methoddesc}[DataManager]{setMeshLabels}{x, y, z=""}
    sets labels for the mesh axes. These are currently only used by the \SILO
    exporter.
\end{methoddesc}

\begin{methoddesc}[DataManager]{setMeshUnits}{x, y, z=""}
    sets units for the mesh axes. These are currently only used by the \SILO
    exporter.
\end{methoddesc}

\begin{methoddesc}[DataManager]{setMetadataSchemaString}{schema, metadata=""}
    sets metadata namespaces and the corresponding metadata. These are
    currently only used by the \VTK exporter.
    \var{schema} is a dictionary that maps prefixes to namespace names, e.g.\\
    \code{\{"gml": "http://www.opengis.net/gml"\}} and \var{metadata} is a
    string with the actual content which will be enclosed in \var{<MetaData>}
    tags.
\end{methoddesc}

\begin{methoddesc}[DataManager]{export}{}
    executes the actual data export. Depending on the \var{formats} parameter
    used in the constructor all data added by \var{addData()} is written to
    disk (\var{RESTART,SILO,VTK}) or made available through the \VisIt
    simulation interface (\var{VISIT}).
    At least the domain must be set for something to be exported.
\end{methoddesc}

\subsection{Saving Data as CSV}
\label{sec:savedatacsv}
\index{saveDataCSV}\index{CSV}
For simple post-processing, \Data objects can be saved in comma separated
value (\emph{CSV}) format.
If \var{mydata1} and \var{mydata2} are scalar data, the command
\begin{python}
  saveDataCSV('output.csv', U=mydata1, V=mydata2)
\end{python}
will record the values in \file{output.csv} in the following format:
\begin{verbatim}
U, V
1.0000000e+0, 2.0000000e-1
5.0000000e-0, 1.0000000e+1
...
\end{verbatim}

The names of the keyword parameters form the names of columns in the output.
If the data objects are over different function spaces, then \var{saveDataCSV}
will attempt to interpolate to a common function space.
If this is not possible, then an exception is raised.

Output can be restricted using a scalar mask as follows:
\begin{python}
  saveDataCSV('outfile.csv', U=mydata1, V=mydata2, mask=myscalar)
\end{python}
This command will only output those rows which correspond to to positive
values of \var{myscalar}.
Some aspects of the output can be tuned using additional parameters:
\begin{python}
  saveDataCSV('data.csv', refid=True, append=True, sep=' ', csep='/', mask=mymask, e=mat1)
\end{python}

\begin{itemize}
 \item \var{refid} -- specifies that the output should include the reference IDs of the elements or nodes
 \item \var{append} -- specifies that the output should be written to the end of an existing file
 \item \var{sep} -- defines the separator between fields
 \item \var{csep} -- defines the separator between components in the header
     line. For example between the components of a matrix.
\end{itemize}
%
The above command would produce output like this:
\begin{verbatim}
refid e/0/0 e/1/0 e/0/1 e/1/1
0 1.0000000000e+00 2.0000000000e+00 3.0000000000e+00 4.0000000000e+00
...
\end{verbatim}

Note that while the order in which rows are output can vary, all the elements
in a given row always correspond to the same input.

\subsection{Converting \Data to a Numpy Array}
\label{sec:getnumpy}
\index{getNumpy}\index{GN}
\Data objects can be converted into a numpy structured array using the commands \var{getNumpy} and \var{convertNumpy}.
\subsubsection{getNumpy}
If \var{mydata1} and \var{mydata2} are scalar \Data, then the command
\begin{python}
  a,b = getNumpy(U=mydata1, V=mydata2)
\end{python}
will return two structured ndarrays with the names '\emph{U}' and '\emph{V}'.
\begin{verbatim}
a['U'] = [1.0000000e+0, 2.0000000e-1, ...
b['V'] = [2.0000000e+0, 3.0000000e-1, ...
\end{verbatim}

Up to five \Data objects can be passed to \var{getNumpy} at the time. These objects can be scalar, vector or tensor \Data objects. The names of the keyword parameters form the names of the returned arrays.
If the data objects are over different function spaces, then \var{getNumpy}
will attempt to interpolate to a common function space.
If this is not possible, then an exception is raised.

Output can be restricted using a scalar mask as follows:
\begin{python}
  a,b,c = getNumpy(U=mydata1, V=mydata2, W=mydata3, mask=myscalar)
\end{python}
This command will only output those rows which correspond to to positive
values of \var{myscalar}.

Note that while the order in which output rows are output can vary, all the elements
in a given row always correspond to the same input.

\subsubsection{convertNumpy}
\Data objects can also be converted into a numpy structured array using the command \var{convertNumpy}.
If \var{mydata1} is a \Data object, then the command
\begin{python}
  a = convertNumpy(mydata1)
\end{python}
will return a structured ndarray containing all of the data in \var{mydata1}. Unlike \var{getNumpy}, this function
does not support the use of masks and does not use MPI.

\subsection{The \Operator Class}
The \Operator class provides an abstract access to operators built
within the \LinearPDE class. \Operator objects are created
when a PDE is handed over to a PDE solver library and handled
by the \LinearPDE object defining the PDE. The user can gain access
to the \Operator of a \LinearPDE object through the \var{getOperator}
method.

\begin{classdesc}{Operator}{}
creates an empty \Operator object.
\end{classdesc}

\begin{methoddesc}[Operator]{isEmpty}{fileName}
returns \True is the object is empty, \False otherwise.
\end{methoddesc}

\begin{methoddesc}[Operator]{resetValues}{}
resets all entries in the operator.
\end{methoddesc}

\begin{methoddesc}[Operator]{solve}{rhs}
    returns the solution \var{u} of: operator * \var{u} = \var{rhs}.
\end{methoddesc}

\begin{methoddesc}[Operator]{of}{u}
applies the operator to the \Data object \var{u}, i.e. performs a matrix-vector
multiplication.
\end{methoddesc}

\begin{methoddesc}[Operator]{saveMM}{fileName}\index{Matrix Market}
saves the object to a Matrix Market format file with name \var{fileName}, see
\url{http://math.nist.gov/MatrixMarket}
\end{methoddesc}

\section{Physical Units}
\escript provides support for physical units in the SI system\index{SI units}
including unit conversion. So the user can define variables in the form
\begin{python}
  from esys.escript.unitsSI import *
  l=20*m
  w=30*kg
  w2=40*lb
  T=100*Celsius
\end{python}
In the two latter cases a conversion from pounds\index{pounds} and degrees
Celsius\index{Celsius} is performed into the appropriate SI units \emph{kg}
and \emph{Kelvin}.
In addition, composed units can be used, for instance
\begin{python}
  from esys.escript.unitsSI import *
  rho=40*lb/cm**3
\end{python}
defines the density in the units of pounds per cubic centimeter.
The value $40$ will be converted into SI units, in this case kg per cubic
meter. Moreover unit prefixes are supported:
\begin{python}
  from esys.escript.unitsSI import *
  p=40*Mega*Pa
\end{python}
The pressure \var{p} is set to 40 Mega Pascal. Units can also be converted
back from the SI system into a desired unit, e.g.
\begin{python}
  from esys.escript.unitsSI import *
  print(p/atm)
\end{python}
can be used print the pressure in units of atmosphere\index{atmosphere}.

The following is an incomplete list of supported physical units:

\begin{datadesc}{km}
unit of kilometer
\end{datadesc}

\begin{datadesc}{m}
unit of meter
\end{datadesc}

\begin{datadesc}{cm}
unit of centimeter
\end{datadesc}

\begin{datadesc}{mm}
unit of millimeter
\end{datadesc}

\begin{datadesc}{sec}
unit of second
\end{datadesc}

\begin{datadesc}{minute}
unit of minute
\end{datadesc}

\begin{datadesc}{h}
unit of hour
\end{datadesc}

\begin{datadesc}{day}
unit of day
\end{datadesc}

\begin{datadesc}{yr}
unit of year
\end{datadesc}

\begin{datadesc}{gram}
unit of gram
\end{datadesc}

\begin{datadesc}{kg}
unit of kilogram
\end{datadesc}

\begin{datadesc}{lb}
unit of pound
\end{datadesc}

\begin{datadesc}{ton}
metric ton
\end{datadesc}

\begin{datadesc}{A}
unit of Ampere
\end{datadesc}

\begin{datadesc}{Hz}
unit of Hertz
\end{datadesc}

\begin{datadesc}{N}
unit of Newton
\end{datadesc}

\begin{datadesc}{Pa}
unit of Pascal
\end{datadesc}

\begin{datadesc}{atm}
unit of atmosphere
\end{datadesc}

\begin{datadesc}{J}
unit of Joule
\end{datadesc}

\begin{datadesc}{W}
unit of Watt
\end{datadesc}

\begin{datadesc}{C}
unit of Coulomb
\end{datadesc}

\begin{datadesc}{V}
unit of Volt
\end{datadesc}

\begin{datadesc}{F}
unit of Farad
\end{datadesc}

\begin{datadesc}{Ohm}
unit of Ohm
\end{datadesc}

\begin{datadesc}{K}
unit of degrees Kelvin
\end{datadesc}

\begin{datadesc}{Celsius}
unit of degrees Celsius
\end{datadesc}

\begin{datadesc}{Fahrenheit}
unit of degrees Fahrenheit
\end{datadesc}

\noindent Supported unit prefixes:

\begin{datadesc}{Yotta}
prefix yotta = $10^{24}$
\end{datadesc}

\begin{datadesc}{Zetta}
prefix zetta = $10^{21}$
\end{datadesc}

\begin{datadesc}{Exa}
prefix exa = $10^{18}$
\end{datadesc}

\begin{datadesc}{Peta}
prefix peta = $10^{15}$
\end{datadesc}

\begin{datadesc}{Tera}
prefix tera = $10^{12}$
\end{datadesc}

\begin{datadesc}{Giga}
prefix giga = $10^9$
\end{datadesc}

\begin{datadesc}{Mega}
prefix mega = $10^6$
\end{datadesc}

\begin{datadesc}{Kilo}
prefix kilo = $10^3$
\end{datadesc}

\begin{datadesc}{Hecto}
prefix hecto = $10^2$
\end{datadesc}

\begin{datadesc}{Deca}
prefix deca = $10^1$
\end{datadesc}

\begin{datadesc}{Deci}
prefix deci = $10^{-1}$
\end{datadesc}

\begin{datadesc}{Centi}
prefix centi = $10^{-2}$
\end{datadesc}

\begin{datadesc}{Milli}
prefix milli = $10^{-3}$
\end{datadesc}

\begin{datadesc}{Micro}
prefix micro = $10^{-6}$
\end{datadesc}

\begin{datadesc}{Nano}
prefix nano = $10^{-9}$
\end{datadesc}

\begin{datadesc}{Pico}
prefix pico = $10^{-12}$
\end{datadesc}

\begin{datadesc}{Femto}
prefix femto = $10^{-15}$
\end{datadesc}

\begin{datadesc}{Atto}
prefix atto = $10^{-18}$
\end{datadesc}

\begin{datadesc}{Zepto}
prefix zepto = $10^{-21}$
\end{datadesc}

\begin{datadesc}{Yocto}
prefix yocto = $10^{-24}$
\end{datadesc}

\section{Utilities}
The \class{FileWriter} class provides a mechanism to write data to a file.
In essence, this class wraps the standard \PYTHON \class{file} class to write
data that are global in \MPI to a file. In fact, data are written on the
processor with \MPI rank 0 only. It is recommended to use \class{FileWriter}
rather than \class{open} in order to write code that will run with and without
\MPI. It is safe to use \class{open} under \MPI to \emph{read} data which are
global under \MPI.

\begin{classdesc}{FileWriter}{fn\optional{,append=\False, \optional{createLocalFiles=\False}})}
Opens a file with name \var{fn} for writing. If \var{append} is set to \True
data are appended at the end of the file.
If running under \MPI, only the first processor (rank==0) will open the file
and write to it.
If \var{createLocalFiles} is set each individual processor will create a file
where for any processor with rank $> 0$ the file name is extended by its rank.
This option is normally used for debugging purposes only.
\end{classdesc}

\vspace{1em}\noindent The following methods are available:
\begin{methoddesc}[FileWriter]{close}{}
closes the file.
\end{methoddesc}
\begin{methoddesc}[FileWriter]{flush}{}
flushes the internal buffer to disk.
\end{methoddesc}
\begin{methoddesc}[FileWriter]{write}{txt}
writes string \var{txt} to the file. Note that a newline is not added.
\end{methoddesc}
\begin{methoddesc}[FileWriter]{writelines}{txts}
writes the list \var{txts} of strings to the file.
Note that newlines are not added.
This method is equivalent to calling \var{write()} for each string.
\end{methoddesc}
\begin{memberdesc}[FileWriter]{closed}
this member is \True if the file is closed.
\end{memberdesc}
\begin{memberdesc}[FileWriter]{mode}
holds the access mode.
\end{memberdesc}
\begin{memberdesc}[FileWriter]{name}
holds the file name.
\end{memberdesc}
\begin{memberdesc}[FileWriter]{newlines}
holds the line separator.
\end{memberdesc}

\noindent The following additional functions are available in the \escript
module:
\begin{funcdesc}{setEscriptParamInt}{name,value}
assigns the integer value \var{value} to the internal Escript parameter
\var{name}. This should be considered an advanced feature and it is generally
not required to call this function. One parameter worth mentioning is
\var{name}="TOO_MANY_LINES" which affects the conversion of \Data objects to a
string. If more than \var{value} lines would be created, a condensed format is
used instead which reports the minimum and maximum values and general
information about the \Data object rather than all values.
\end{funcdesc}

\begin{funcdesc}{getEscriptParamInt}{name}
returns the current value of internal Escript parameter \var{name}.
\end{funcdesc}

\begin{funcdesc}{listEscriptParams}{a}
returns a list of valid Escript parameters and their description.
\end{funcdesc}

\begin{funcdesc}{getMPISizeWorld}{}
returns the number of \MPI processes in use in the \env{MPI_COMM_WORLD}
process group. If \MPI is not used 1 is returned.
\end{funcdesc}

\begin{funcdesc}{getMPIRankWorld}{}
returns the rank of the current process within the \env{MPI_COMM_WORLD}
process group. If \MPI is not used 0 is returned.
\end{funcdesc}

\begin{funcdesc}{MPIBarrierWorld}{}
performs a barrier synchronization across all processes within the
\env{MPI_COMM_WORLD} process group.
\end{funcdesc}

\begin{funcdesc}{getMPIWorldMax}{a}
returns the maximum value of the integer \var{a} across all processes within
\env{MPI_COMM_WORLD}.
\end{funcdesc}

\section{Lazy Evaluation of Data}
\label{sec:lazy}
Constant and Tagged representations of Data are relatively small but Expanded\footnote{Separate values stored for each point of the FunctionSpace.} are larger and
will not entirely fit in CPU cache.

Escript's lazy evaluation features record operations performed on Data objects but do not actually carry them out until the Data is ``resolved''.

Consider the following code:
\begin{python}
from esys.escript import *
from esys.dudley import Rectangle
x=Rectangle(3,3)
x=Rectangle(3,3).getX()
c=Data((1.5, 1), x.getFunctionSpace())
t=Data(((1,1),(0,1)), x.getFunctionSpace())
t.tag()
\end{python}

The variables \var{c}, \var{t}, \var{x} are stored as \texttt{constant}, \texttt{tagged} and \texttt{expanded} Data respectively.
Printing those variables will show the values stored (or if we were to use a larger Rectangle, a summary).

\begin{python}
v = matrix_mult(t,x) + c
print(v.isExpanded())
print(v)
\end{python}

Will output \texttt{True} followed by all of the values for \var{v}.
Now we'll introduce lazy evaluation:

\begin{python}
xx = x.delay()
print(xx.isExpanded(), xx.isLazy())
print(x.isExpanded(), x.isLazy())
print(xx)
\end{python}

The first print will show that \var{xx} is not considered to be ``expanded'', while the second print shows that \var{x} is unaffected.
The last print will produce something like:
\begin{python}
Lazy Data: [depth=0] E@0x55ed512ad760
\end{python}
The \texttt{E} before the \verb|@| shows that this lazy Data is wrapping ``expanded'' Data.
Calling \texttt{.delay()} on constant or tagged Data results in \verb|C@...| and \verb|T@...| respectively.

If an input to an operation is lazy, then the result will be lazy as well\footnote{Matrix inverse is an exception to this.}:
\begin{python}
res = matrix_mult(t,-xx) + c
print(res)
\end{python}
Will produce:
\begin{python}
Lazy Data: [depth=3] (prod(T@0x..., neg(E@...)) + C@0x...)
\end{python}
Depth indicates the largest number of operators from the top of the expression to the bottom.

To actually find the value of this lazy Data object, we need to resolve it:
\begin{python}
res.resolve()
\end{python}
Note that \texttt{resolve()} doesn't return a new object, but transforms the object it is called on.
Printing, \var{res} now will show the values at each point.

\subsection{Lazyness and non-expanded Data}
While it is possible to call delay on constant or tagged Data, escript will not build expressions consisting solely of such Data.
\begin{python}
cx=c.delay()
res=cx+cx
print(res)
\end{python}
would output:
\begin{python}
Lazy Data: [depth=0] C@0x55ed512cc7c0
# Not
Lazy Data: [depth=1] (C@0x... + C@0x...)
\end{python}


\subsection{When to resolve}

You are never \emph{required} to manually resolve lazy Data in \texttt{escript}.
Any operations which need the actual values of an expression will either
\begin{itemize}
 \item compute the values without resolving the whole Data object at once (solvers assembling FEM matrices)
 \item resolve the data automatically (everthing else)
\end{itemize}

\noindent Escript will automatically resolve lazy Data:
\begin{enumerate}
 \item If a matrix inversion operation is applied to the Data.
 \item If the expression tree becomes too deep\footnote{At time of writing, this threshold is somewhat arbitrarily set at \texttt{depth>9}, but this is configurable.}.
\end{enumerate}
Note, the second point is important when writing loops like this:
\begin{python}
# x is initial guess
while err > tol:
  construct PDE coefficients involving x
  solve PDE
  calculate err
  update x
\end{python}

After a few iterations of the loop, \var{x} may be something like \texttt{x=F(F(F(F(originalX))))}.
So it will probably be better to \texttt{resolve} \var{x} at the end of each loop iteration.
Alternatively, if \var{x} is included in many expressions in the loop, it may be better to resolve it earlier.

\subsection{Options for using lazy evaluation}

There are two ways to enable lazy evaluation:
\begin{enumerate}
 \item Any escript script can make use of lazy evaluation by \texttt{delay()}-ing one of its expanded Data variables.
Any expressions including that delayed variable (directly or indirectly) will be lazy until resolved.
 \item Setting the \texttt{AUTOLAZY} parameter for \texttt{escript} to \texttt{1}.
 In this case, most escript operation which would normally produce extended Data, will produce lazy Data instead.
 In general, this option is not recommended for two reasons:
 \begin{itemize}
  \item AUTOLAZY uses the \texttt{setEscriptParamInt()} which is not guaranteed to have continued support.
  \item Making everything lazy instead of just more complex objects is not likely to give significant efficiency improvements.
 \end{itemize}
\end{enumerate}

\subsection{When to use lazy evaluation?}
Exactly when using lazy evaluation will be more efficient is still an open question.
When the objects being manipulated are large (eg 4-Tensors in Drucker-Prager), significant memory and runtime improvements can be achieved.
See~\cite{lazyauspdc}.

Our best advice is to experiment with it.