File: faultsystem.tex

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (384 lines) | stat: -rw-r--r-- 15,531 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Fault System}
\label{Fault System}
The \class{FaultSystem} class provides an easy-to-use interface to handle 2D
and 3D fault systems\index{faults} as used for instance in simulating fault
ruptures. The main purpose of the class is to provide a parameterization of
an individual fault in the system of faults.
In case of a 2D fault the fault is parameterized by a single value $w_{0}$ and
in the case of a 3D fault two parameters $w_{0}$ and $w_{1}$ are used.
This parameterization can be used to impose data (e.g. a slip distribution)
onto the fault. It can also be a useful tool to visualize or analyze the
results on the fault if the fault is not straight. 

\begin{figure}
\centering
\includegraphics{FaultSystem2D}
\caption{\label{FAULTSYSTEM2D}Two dimensional fault system with one fault
named `t` in the $(x_{0},x_{1})$ space and its parameterization in the
$w_{0}$ space. The fault has three segments.}
\end{figure}

A fault $t$ in the fault system is represented by a starting point $V^{t0}$
and series of directions, called strikes\index{strike}, and the lengths $(l^{ti})$.
The strike of segment $i$ is defined by the angle $\sigma^{ti}$ between the
$x_{0}$-axis and the direction of the fault, see Figure~\ref{FAULTSYSTEM2D}.
The length and strike defines the polyline $(V^{ti})$ of the fault by
\begin{equation}
V^{ti} = V^{t(i-1)} + 
l^{ti} \cdot  S^{ti}
\mbox{ with }
S^{ti} =
\left[
\begin{array}{c}
 cos(\sigma^{ti})  \\
 sin(\sigma^{ti}) \\
 0 
\end{array}
\right]
\label{eq:fault 00}
\end{equation}
In the 3D case each fault segment $i$ has an additional dip\index{dip}
$\theta^{ti}$ and at each vertex $i$ a depth $\delta^{ti}$ is given.
The fault segment normal $n^{ti}$ is given by
\begin{equation}
n^{ti} = 
\left[
\begin{array}{c}
 -sin(\theta^{ti}) \cdot S^{ti}_{1} \\
 sin(\theta^{ti}) \cdot S^{ti}_{0} \\
 cos(\theta^{ti}) 
\end{array}
\right]
\label{eq:fault 0}
\end{equation}
At each vertex we define a depth vector $d^{ti}$ defined as the intersect of
the fault planes of segment $(i-1)$ and $i$ where for the first segment and
last segment the vector orthogonal to strike vector $S^{ti}$\index{strike}
and the segment normal $n^{ti}$ is used. The direction $\tilde{d}^{ti}$ of the
depth vector is given as
\begin{equation}
\tilde{d}^{ti} = n^{ti} \times n^{t(i-1)}
\label{eq:fault b}
\end{equation}
If $\tilde{d}^{ti}$ is zero the strike vectors $L^{t(i-1)}$ and $L^{ti}$ are
collinear and we can set $\tilde{d}^{ti} = l^{ti} \times n^{ti}$.
If the two fault segments are almost orthogonal $\tilde{d}^{ti}$ is pointing
in the direction of $L^{t(i-1)}$ and $L^{ti}$. In this case no depth can be
defined. So we will reject a fault system if
\begin{equation}
min(\| \tilde{d}^{ti}  \times  L^{t(i-1)} \|,\| \tilde{d}^{ti}  \times  L^{ti} \|) 
\le 0.1 \cdot \| \tilde{d}^{ti} | 
\label{eq:fault c}
\end{equation}
which corresponds to an angle of less than $10^o$ between the depth vector and
the strike. We then set
\begin{equation}
d^{ti}=\delta^{ti} \cdot \frac{\tilde{d}^{ti}}{\|\tilde{d}^{ti}\|}
\label{eq:fault d}
\end{equation}
We can then define the polyline $(v^{ti})$ for the bottom of the fault as
\begin{equation}
v^{ti}= V^{ti}+d^{ti}
\label{eq:fault e}
\end{equation}
In order to simplify working on a fault $t$ in a fault system a
parameterization $P^t: (w_{0},w_{1}) \rightarrow (x_{0},x_{1},x_{2})$ over a
rectangular domain is introduced such that
\begin{equation}
0\le w_{0} \le w^t_{0 max} \mbox{ and }  -w^t_{1max}\le w_{1} \le 0
\label{eq:fault 1}
\end{equation}
with positive numbers $w^t_{0 max}$ and $w^t_{1 max}$. Typically one chooses
$w^t_{0 max}$ to be the unrolled length of the fault and $w^t_{1 max}$ to be
the mean value of segment depth. Moreover we have
\begin{equation}
P^t(W^{ti})=V^{ti}\mbox{ and } P^t(w^{ti})=v^{ti}\
\label{eq:fault 2}
\end{equation}
where
\begin{equation}
W^{ti}=(\Omega^{ti},0) \mbox{ and } w^{ti}=(\Omega^{ti},-w^t_{1 max})
\label{eq:fault 3}
\end{equation}
and $\Omega^{ti}$ is the unrolled distance of $W^{ti}$ from $W^{t0}$, i.e.
$l^{ti}=\Omega^{t(i+1)}-\Omega^{ti}$. In the 2D case $w^t_{1 max}$ is set to
zero and therefore the second component is dropped, see Figure~\ref{FAULTSYSTEM2D}.

In the 2D case the parameterization $P^t$ is constructed as follows:
The line connecting $V^{t(i-1)}$ and $V^{ti}$ is given by
\begin{equation}
x=V^{ti} + s  \cdot  ( V^{t(i+1)}- V^{ti} )
\label{eq:2D line 1}
\end{equation}
where $s$ is between $0$ and $1$. The point $x$ is on $i$-th fault segment if
and only if such an $s$ exists. Assuming $x$ is on the fault it can be
calculated as
\begin{equation}
s = \frac{ (x- V^{ti})^t \cdot (V^{t(i+1)}- V^{ti}) }{ \|V^{t(i+1)}- V^{ti}\|^2} 
\label{eq:2D line 1b}
\end{equation}
We then can set
\begin{equation}
w_{0}=\Omega^{ti}+s \cdot (\Omega^{ti}-\Omega^{t(i-1)})
\label{eq:2D line 2}
\end{equation}
to get $P^t(w_{0})=x$.
It remains the question if the given $x$ is actually on the segment $i$ of
fault $t$. To test this $s$ is restricted between $0$ and $1$ (so if $s<0$, $s$
is set to $0$ and if $s>1$, $s$ is set to $1$) and then we check the residual
of \eqn{eq:2D line 1}, i.e. $x$ has been accepted to be in the segment if
\begin{equation}
\|x-V^{ti} - s \cdot (V^{t(i+1)}- V^{ti}) \| \le tol \cdot  
max(l^{ti}, \|x-V^{ti} \|) 
\label{eq:2D line 3}
\end{equation}
where $tol$ is a given tolerance.

In the 3D case the situation is a bit more complicated: we split the fault
segment across the diagonal $V^{ti}$-$v^{t(i+1)}$ to produce two triangles.
In the upper triangle we use the parameterization 
\begin{equation}
x= V^{ti} + s \cdot (V^{t(i+1)}-V^{ti})  + r \cdot (v^{t(i+1)}-V^{t(i+1)})
\mbox{ with } r \le s; 
\label{eq:2D line 4}
\end{equation}
while in the lower triangle we use
\begin{equation}
x= V^{ti} +  s \cdot (v^{t(i+1)}-v^{ti}) + r \cdot (v^{ti}-V^{ti})
\mbox{ with } s \le r; 
\label{eq:2D line 4b}
\end{equation}
where $0\le s,r \le 1$. Both equations are solved in the least-squares sense
e.g. using the Moore-Penrose pseudo-inverse for the coefficient matrices.
The resulting $s$ and $r$ are then restricted to the unit square. Similar to
the 2D case (see \eqn{eq:2D line 3}) we identify $x$ to be in the upper
triangle of the segment if
\begin{equation}
\|x- V^{ti} - s \cdot (V^{t(i+1)}-V^{ti})  - r \cdot (v^{t(i+1)}-V^{t(i+1)}) \|
\le tol \cdot  max(\|x-V^{ti} \|,\|v^{t(i+1)}-V^{t(i)})\|) 
\label{eq:2D line 4c}
\end{equation}
and in the lower part
\begin{equation}
\|x-V^{ti} -  s \cdot (v^{t(i+1)}-v^{ti}) - r \cdot (v^{ti}-V^{ti}) \|
\le tol \cdot  max(\|x-V^{ti} \|,\|v^{t(i+1)}-V^{t(i)})\|)  
\label{eq:2D line 4d}
\end{equation}
after the restriction of $(s,t)$ to the unit square.
Note that $\|v^{t(i+1)}-V^{t(i)})\|$ is the length of the diagonal of the
fault segment. For those $x$ which have been located in the $i$-th segment we
then set
\begin{equation}
w_{0}=\Omega^{ti}+s \cdot (\Omega^{ti}-\Omega^{t(i-1)})
\mbox{ and }
w_{1}=w^t_{1max} (r-1) 
\label{eq:2D line 5}
\end{equation}

\subsection{Functions}

\begin{classdesc}{FaultSystem}{\optional{dim =3}}
creates a fault system in the \var{dim} dimensional space.
\end{classdesc}

\begin{methoddesc}[FaultSystem]{getMediumDepth}{tag}
returns the medium depth of fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getTags}{}
returns a list of the tags used by the fault system.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getStart}{tag}
returns the starting point of fault \var{tag} as a \numpyNDA object.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getDim}{}
returns the spatial dimension.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getDepths}{tag}
returns the list of the depths of the segments in fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getTopPolyline}{tag}
returns the polyline used to describe the fault tagged by \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getStrikes}{tag}
returns the list of strikes $\sigma^{ti}$ of the segments in fault
$t=$\var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getStrikeVectors}{tag}
returns the strike vectors $S^{ti}$ of fault $t=$\var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getLengths}{tag}
returns the lengths $l^{ti}$ of the segments in fault $t=$\var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getTotalLength}{tag}
returns the total unrolled length of fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getDips}{tag}
returns the list of the dips of the segments in fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getBottomPolyline}{tag}
returns the list of the vertices defining the bottom of the fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getSegmentNormals}{tag}
returns the list of the normals of the segments in fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getDepthVectors}{tag}
returns the list of the depth vectors $d^{ti}$ for fault $t=$\var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getDepths}{tag}
returns the list of the depths of the segments in fault \var{tag}.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getW0Range}{tag}
returns the range of the parameterization in $w_{0}$.
For tag $t$ this is the pair $(\Omega^{t0},\Omega^{tn})$ where $n$ is the
number of segments in the fault.
In most cases one has $(\Omega^{t0},\Omega^{tn})=(0,w^t_{0 max})$.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getW1Range}{tag}
returns the range of the parameterization in  $w_{1}$.
For tag $t$ this is the pair $(-w^t_{1max},0)$.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getW0Offsets}{tag}
returns the offsets for the parameterization of fault \var{tag}.
For tag \var{tag}=$t$ this is the list $[\Omega^{ti}]$.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getCenterOnSurface}{}
returns the center point of the fault system at the surfaces.
In 3D the calculation of the center is considering the top edge of the faults
and projects the edge to the surface (the $x_{2}$ component is assumed to be
0). An \numpyNDA object is returned.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getOrientationOnSurface}{}
returns the orientation of the fault system in RAD on the surface
($x_{2}=0$ plane) around the fault system center.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{transform}{\optional{rot=0, \optional{shift=numpy.zeros((3,)}}}
applies a shift \var{shift} and a consecutive rotation in the $x_{2}=0$ plane.
\var{rot} is a float number and \var{shift} an \numpyNDA object.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getMaxValue}{f\optional{, tol=1.e-8}}
returns the tag of the fault where \var{f} takes the maximum value and a
\class{Locator} object which can be used to collect values from \Data objects
at the location where the maximum is taken, e.g.
\begin{python}
       fs=FaultSystem()
       f=Scalar(..)
       t, loc=fs.getMaxValue(f)
       print("maximum value of f on the fault %s is %s at location %s."%(t, \
             loc(f), loc.getX()))
\end{python}
\var{f} must be a \Scalar. When the maximum is calculated only
\DataSamplePoints are considered which are on a fault in the fault system in
the sense of condition~\ref{eq:2D line 3} or \ref{eq:2D line 4d}, respectively.
In the case no \DataSamplePoints are found the returned tag is \var{None} and
the maximum value as well as the location of the maximum value are undefined.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getMinValue}{f\optional{, tol=1.e-8}}
returns the tag of the fault where \var{f} takes the minimum value and a
\class{Locator} object which can be used to collect values from \Data objects
at the location where the minimum is taken, e.g.
\begin{python}
  fs=FaultSystem()
  f=Scalar(..)
  t, loc=fs.getMinValue(f)
  print("minimum value of f on the fault %s is %s at location."%\
      (t,loc(f),loc.getX()))
\end{python}
\var{f} must be a \Scalar. When the minimum is calculated only
\DataSamplePoints are considered which are on a fault in the fault system in
the sense of condition~\ref{eq:2D line 3} or \ref{eq:2D line 4d}, respectively.
In the case no \DataSamplePoints are found the returned tag is \var{None} and
the minimum value as well as the location of the minimum value are undefined.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getParametrization}{x,tag \optional{\optional{, tol=1.e-8}, outsider=None}}
returns the argument $w$ of the parameterization $P^t$ for \var{tag}=$t$ to
provide \var{x} together with a mask indicating where the given location if on
a fault in the fault system by the value $1$ (otherwise the value is set to $0$).
\var{x} needs to be a \Vector or \numpyNDA object.
\var{tol} defines the tolerance to decide if given \DataSamplePoints are on
fault \var{tag}. The value \var{outside} is the value used as a replacement
value for $w$ where the corresponding value in \var{x} is not on a fault.
If \var{outside} is not present an appropriate value is used.
\end{methoddesc}
 
\begin{methoddesc}[FaultSystem]{getSideAndDistance}{x,tag}
returns the side and the distance at locations \var{x} from the fault \var{tag}.
\var{x} needs to be a \Vector or \numpyNDA object.
Positive values for side means that the corresponding location is to the right
of the fault, a negative value means that the corresponding location is
to the left of the fault. The value zero means that the side is undefined.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{getFaultSegments}{tag}
returns the polylines used to describe fault \var{tag}. For \var{tag}=$t$ this
is the list of the vertices $[V^{ti}]$ for the 2D and the pair of lists of the
top vertices $[V^{ti}]$ and the bottom vertices $[v^{ti}]$ in 3D.
Note that the coordinates are represented as \numpyNDA objects.
\end{methoddesc}

\begin{methoddesc}[FaultSystem]{addFault}{
strikes\optional{,
ls\optional{,
V0=[0.,0.,0.]\optional{,
tag=None\optional{,
dips=None\optional{,
depths= None\optional{,
w0_offsets=None\optional{,
w1_max=None}}}}}}}}
adds the fault \var{tag} to the fault system.
\var{V0} defines the start point of fault named $t=$\var{tag}.
The polyline defining the fault segments on the surface are set by the strike
angles \var{strikes} (=$\sigma^{ti}$, north = $\pi/2$, the orientation is
counterclockwise.) and the length \var{ls} (=$l^{ti}$).
In the 3D case one also needs to define the dip angles \var{dips}
(=$\delta^{ti}$, vertical=$0$, right-hand rule applies.) and the depth
\var{depths} for each segment.
\var{w1_max} defines the range of $w_{1}$.
If not present the mean value over the depth of all segment edges in the fault
is used.
\var{w0_offsets} sets the offsets $\Omega^{ti}$. If not present it is chosen
such that $\Omega^{ti}-\Omega^{t(i-1)}$ is the length of the $i$-th segment.
In some cases, e.g. when kinks in the fault are relevant, it can be useful
to explicitly specify the offsets in order to simplify the assignment of values.
\end{methoddesc}

\subsection{Example}
See \Sec{Slip CHAP}.