1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Elastic Deformation}
\label{ELASTIC CHAP}
In this section we want to examine the deformation of a linear elastic body caused by expansion through a heat distribution.
We want a displacement field $u_{i}$ which solves the momentum
equation\index{momentum equation}:
\begin{eqnarray}\label{HEATEDBLOCK general problem}
- \sigma_{ij,j}=0
\end{eqnarray}
where the stress $\sigma$ is given by
\begin{eqnarray}\label{HEATEDBLOCK linear elastic}
\sigma_{ij}= \lambda u_{k,k} \delta_{ij} + \mu ( u_{i,j} + u_{j,i})
- (\lambda+\frac{2}{3} \mu) \; \alpha \; (T-T_{ref})\delta_{ij} \;.
\end{eqnarray}
In this formula $\lambda$ and $\mu$ are the Lam\'e coefficients, $\alpha$ is the
temperature expansion coefficient, $T$ is the temperature distribution and $T_{ref}$ a reference temperature.
Note that \eqn{HEATEDBLOCK general problem} is similar to \eqn{WAVE general problem}
introduced in \Sec{WAVE CHAP} but the inertia term $\rho u_{i,tt}$
has been dropped as we assume a static scenario here.
Moreover, in comparison to the \eqn{WAVE stress} definition of stress $\sigma$
in \eqn{HEATEDBLOCK linear elastic} an extra term is introduced to bring in
stress due to volume changes through temperature dependent expansion.
Our domain is the unit cube
\begin{eqnarray} \label{HEATEDBLOCK natural location}
\Omega=\{(x_{i}) | 0 \le x_{i} \le 1 \}
\end{eqnarray}
On the boundary the normal stress component is set to zero
\begin{eqnarray} \label{HEATEDBLOCK natural}
\sigma_{ij}n_{j}=0
\end{eqnarray}
and on the face with $x_{i}=0$ we set the $i$-th component of the displacement to $0$:
\begin{eqnarray} \label{HEATEDBLOCK constraint}
u_{i}(x)=0 & \mbox{ where } & x_{i}=0 \;
\end{eqnarray}
For the temperature distribution we use
\begin{eqnarray} \label{HEATEDBLOCK temperature}
T(x)= T_{0} e^{-\beta \|x-x^{c}\|}
\end{eqnarray}
with a given positive constant $\beta$ and location $x^{c}$ in the domain.
%Later in \Sec{MODELFRAME} we will use
% $T$ from a time-dependent temperature diffusion problem as discussed in \Sec{DIFFUSION CHAP}.
When we insert \eqn{HEATEDBLOCK linear elastic} we get a second order system
of linear PDEs for the displacements $u$ which is called the Lam\'e equation\index{Lam\'e equation}.
We want to solve this using the \LinearPDE class.
For a system of PDEs and a solution with several components the \LinearPDE class takes PDEs of the form
\begin{equation}\label{LINEARPDE.SYSTEM.1 TUTORIAL}
-(A_{ijkl} u_{k,l})_{,j}=-X_{ij,j} \; .
\end{equation}
$A$ is a \RankFour and $X$ is a \RankTwo.
We show here the coefficients relevant for the problem we are trying to solve.
The full form is given in \eqn{LINEARPDE.SYSTEM.1}.
The natural boundary conditions\index{boundary condition!natural} take the form
\begin{equation}\label{LINEARPDE.SYSTEM.2 TUTORIAL}
n_{j} A_{ijkl} u_{k,l}=n_{j}X_{ij}
\end{equation}
while constraints\index{constraint} take the form
\begin{equation}\label{LINEARPDE.SYSTEM.3 TUTORIAL}
u_{i}=r_{i} \mbox{ where } q_{i}>0
\end{equation}
$r$ and $q$ are each a \RankOne.
We can easily identify the coefficients in \eqn{LINEARPDE.SYSTEM.1 TUTORIAL}:
\begin{eqnarray}\label{LINEARPDE ELASTIC COEFFICIENTS}
A_{ijkl}=\lambda \delta_{ij} \delta_{kl} + \mu (
\delta_{ik} \delta_{jl}
+ \delta_{il} \delta_{jk}) \\
X_{ij}=(\lambda+\frac{2}{3} \mu) \; \alpha \; (T-T_{ref})\delta_{ij} \\
\end{eqnarray}
The characteristic function $q$ defining the locations and components where constraints are set is given by:
\begin{equation}\label{HEATEDBLOCK MASK}
q_{i}(x)=\left\{
\begin{array}{cl}
1 & x_{i}=0\\
0 & \mbox{otherwise.}\\
\end{array}
\right.
\end{equation}
Under the assumption that $\lambda$, $\mu$, $\beta$ and $T_{ref}$
are constant we may use $Y_{i}=(\lambda+\frac{2}{3} \mu) \; \alpha \; T_{i}$.
However, this choice would lead to a different natural boundary condition
which does not set the normal stress component as defined in \eqn{HEATEDBLOCK linear elastic} to zero.
Analogous to the concept of symmetry for a single PDE, we call the PDE
defined by \eqn{LINEARPDE.SYSTEM.1 TUTORIAL} symmetric\index{symmetric PDE} if
\begin{eqnarray}\label{LINEARPDE.SYSTEM.SYMMETRY TUTORIAL}
A_{ijkl} =A_{klij} \\
\end{eqnarray}
This Lam\'e equation is in fact symmetric, given the difference in $D$ and $d$ as compared to the scalar case.
The \LinearPDE class is notified of this fact by calling its \method{setSymmetryOn} method.
After we have solved the Lam\'e equation we want to analyse the actual stress distribution.
Typically the \emph{von-Mises} stress\index{von-Mises stress} defined by
\begin{equation}
\sigma_{mises} = \sqrt{
\frac{1}{2} ((\sigma_{00}-\sigma_{11})^2
+ (\sigma_{11}-\sigma_{22})^2
+ (\sigma_{22}-\sigma_{00})^2)
+ 3( \sigma_{01}^2+\sigma_{12}^2+\sigma_{20}^2) }
\end{equation}
is used to detect material damage.
Here we want to calculate the von-Mises stress and write it to a file for visualization.
The following script, which is available in \file{heatedblock.py} in the
\ExampleDirectory, solves the Lam\'e equation and writes the displacements and
the von-Mises stress\index{von-Mises stress} into a file \file{deform.vtu} in
the \VTK file format\index{scripts!\file{diffusion.py}}:
\begin{python}
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.finley import Brick
from esys.weipa import saveVTK
#... set some parameters ...
lam=1.
mu=0.1
alpha=1.e-6
xc=[0.3, 0.3, 1.]
beta=8.
T_ref=0.
T_0=1.
#... generate domain ...
mydomain = Brick(l0=1., l1=1., l2=1., n0=10, n1=10, n2=10)
x=mydomain.getX()
#... set temperature ...
T=T_0*exp(-beta*length(x-xc))
#... open symmetric PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
#... set coefficients ...
C=Tensor4(0., Function(mydomain))
for i in range(mydomain.getDim()):
for j in range(mydomain.getDim()):
C[i,i,j,j]+=lam
C[i,j,i,j]+=mu
C[i,j,j,i]+=mu
msk=whereZero(x[0])*[1.,0.,0.] \
+whereZero(x[1])*[0.,1.,0.] \
+whereZero(x[2])*[0.,0.,1.]
sigma0=(lam+2./3.*mu)*alpha*(T-T_ref)*kronecker(mydomain)
mypde.setValue(A=C, X=sigma0, q=msk)
#... solve pde ...
u=mypde.getSolution()
#... calculate von-Mises stress
g=grad(u)
sigma=mu*(g+transpose(g))+lam*trace(g)*kronecker(mydomain)-sigma0
sigma_mises=sqrt(((sigma[0,0]-sigma[1,1])**2+(sigma[1,1]-sigma[2,2])**2+ \
(sigma[2,2]-sigma[0,0])**2)/2. \
+3*(sigma[0,1]**2 + sigma[1,2]**2 + sigma[2,0]**2))
#... output ...
saveVTK("deform.vtu", disp=u, stress=sigma_mises)
\end{python}
\begin{figure}
\centerline{\includegraphics[width=\figwidth]{HeatedBlock}}
\caption{von-Mises Stress and Displacement Vectors}
\label{HEATEDBLOCK FIG 2}
\end{figure}
\noindent Finally, the results can be visualized by calling
\begin{verbatim}
mayavi2 -d deform.vtu -f CellToPointData -m Vectors -m Surface
\end{verbatim}
Note that the filter \text{CellToPointData} is applied to create a smoother
representation of the von-Mises stress.
\fig{HEATEDBLOCK FIG 2} shows the results where the colour of the vertical
planes represent the von-Mises stress and a horizontal plane of arrows shows
the displacements vectors.
|