File: heatedblock.tex

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (182 lines) | stat: -rw-r--r-- 7,759 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{Elastic Deformation}
\label{ELASTIC CHAP}
In this section we want to examine the deformation of a linear elastic body caused by expansion through a heat distribution.
We want a displacement field $u_{i}$ which solves the momentum
equation\index{momentum equation}:
\begin{eqnarray}\label{HEATEDBLOCK general problem}
 - \sigma_{ij,j}=0
\end{eqnarray}
where the stress $\sigma$ is given by
\begin{eqnarray}\label{HEATEDBLOCK linear elastic}
 \sigma_{ij}= \lambda u_{k,k} \delta_{ij} + \mu ( u_{i,j} + u_{j,i})
 - (\lambda+\frac{2}{3} \mu)  \; \alpha  \;  (T-T_{ref})\delta_{ij} \;.
\end{eqnarray}
In this formula $\lambda$ and $\mu$ are the Lam\'e coefficients, $\alpha$ is the
temperature expansion coefficient, $T$ is the temperature distribution and $T_{ref}$ a reference temperature.
Note that \eqn{HEATEDBLOCK general problem} is similar to \eqn{WAVE general problem}
introduced in \Sec{WAVE CHAP} but the inertia term $\rho u_{i,tt}$
has been dropped as we assume a static scenario here.
Moreover, in comparison to the \eqn{WAVE stress} definition of stress $\sigma$
in \eqn{HEATEDBLOCK linear elastic} an extra term is introduced to bring in
stress due to volume changes through temperature dependent expansion.

Our domain is the unit cube
\begin{eqnarray} \label{HEATEDBLOCK natural location}
\Omega=\{(x_{i}) | 0 \le x_{i} \le 1 \}
\end{eqnarray}
On the boundary the normal stress component is set to zero
\begin{eqnarray} \label{HEATEDBLOCK natural}
\sigma_{ij}n_{j}=0
\end{eqnarray}
and on the face with $x_{i}=0$ we set the $i$-th component of the displacement to $0$:
\begin{eqnarray} \label{HEATEDBLOCK constraint}
u_{i}(x)=0 & \mbox{ where } & x_{i}=0 \;
\end{eqnarray}
For the temperature distribution we use
\begin{eqnarray} \label{HEATEDBLOCK temperature}
T(x)= T_{0} e^{-\beta \|x-x^{c}\|}
\end{eqnarray}
with a given positive constant $\beta$ and location $x^{c}$ in the domain.

%Later in \Sec{MODELFRAME} we will use
% $T$ from a time-dependent temperature diffusion problem as discussed in \Sec{DIFFUSION CHAP}.
When we insert \eqn{HEATEDBLOCK linear elastic} we get a second order system
of linear PDEs for the displacements $u$ which is called the Lam\'e equation\index{Lam\'e equation}.
We want to solve this using the \LinearPDE class.
For a system of PDEs and a solution with several components the \LinearPDE class takes PDEs of the form
\begin{equation}\label{LINEARPDE.SYSTEM.1 TUTORIAL}
-(A_{ijkl} u_{k,l})_{,j}=-X_{ij,j} \; .
\end{equation}
$A$ is a \RankFour and $X$ is a \RankTwo.
We show here the coefficients relevant for the problem we are trying to solve.
The full form is given in \eqn{LINEARPDE.SYSTEM.1}.
The natural boundary conditions\index{boundary condition!natural} take the form
\begin{equation}\label{LINEARPDE.SYSTEM.2 TUTORIAL}
n_{j} A_{ijkl} u_{k,l}=n_{j}X_{ij}
\end{equation}
while constraints\index{constraint} take the form
\begin{equation}\label{LINEARPDE.SYSTEM.3 TUTORIAL}
u_{i}=r_{i} \mbox{ where } q_{i}>0
\end{equation}
$r$ and $q$ are each a \RankOne.
We can easily identify the coefficients in \eqn{LINEARPDE.SYSTEM.1 TUTORIAL}:
\begin{eqnarray}\label{LINEARPDE ELASTIC COEFFICIENTS}
A_{ijkl}=\lambda \delta_{ij} \delta_{kl} + \mu (
\delta_{ik} \delta_{jl}
+ \delta_{il} \delta_{jk}) \\
X_{ij}=(\lambda+\frac{2}{3} \mu) \;  \alpha \; (T-T_{ref})\delta_{ij} \\
\end{eqnarray}
The characteristic function $q$ defining the locations and components where constraints are set is given by:
\begin{equation}\label{HEATEDBLOCK MASK}
q_{i}(x)=\left\{
\begin{array}{cl}
1 & x_{i}=0\\
0 & \mbox{otherwise.}\\
\end{array}
\right.
\end{equation}
Under the assumption that $\lambda$, $\mu$, $\beta$ and $T_{ref}$
are constant we may use $Y_{i}=(\lambda+\frac{2}{3} \mu) \; \alpha \; T_{i}$.
However, this choice would lead to a different natural boundary condition
which does not set the normal stress component as defined in \eqn{HEATEDBLOCK linear elastic} to zero.

Analogous to the concept of symmetry for a single PDE, we call the PDE
defined by \eqn{LINEARPDE.SYSTEM.1 TUTORIAL} symmetric\index{symmetric PDE} if
\begin{eqnarray}\label{LINEARPDE.SYSTEM.SYMMETRY TUTORIAL}
A_{ijkl} =A_{klij} \\
\end{eqnarray}
This Lam\'e equation is in fact symmetric, given the difference in $D$ and $d$ as compared to the scalar case.
The \LinearPDE class is notified of this fact by calling its \method{setSymmetryOn} method.

After we have solved the Lam\'e equation we want to analyse the actual stress distribution.
Typically the \emph{von-Mises} stress\index{von-Mises stress} defined by
\begin{equation}
\sigma_{mises} = \sqrt{
\frac{1}{2} ((\sigma_{00}-\sigma_{11})^2
            + (\sigma_{11}-\sigma_{22})^2
            + (\sigma_{22}-\sigma_{00})^2)
+ 3( \sigma_{01}^2+\sigma_{12}^2+\sigma_{20}^2) }
\end{equation}
is used to detect material damage.
Here we want to calculate the von-Mises stress and write it to a file for visualization.

The following script, which is available in \file{heatedblock.py} in the
\ExampleDirectory, solves the Lam\'e equation and writes the displacements and
the von-Mises stress\index{von-Mises stress} into a file \file{deform.vtu} in
the \VTK file format\index{scripts!\file{diffusion.py}}:
\begin{python}
  from esys.escript import *
  from esys.escript.linearPDEs import LinearPDE
  from esys.finley import Brick
  from esys.weipa import saveVTK
  #... set some parameters ...
  lam=1.
  mu=0.1
  alpha=1.e-6
  xc=[0.3, 0.3, 1.]
  beta=8.
  T_ref=0.
  T_0=1.
  #... generate domain ...
  mydomain = Brick(l0=1., l1=1., l2=1., n0=10, n1=10, n2=10)
  x=mydomain.getX()
  #... set temperature ...
  T=T_0*exp(-beta*length(x-xc))
  #... open symmetric PDE ...
  mypde=LinearPDE(mydomain)
  mypde.setSymmetryOn()
  #... set coefficients ...
  C=Tensor4(0., Function(mydomain))
  for i in range(mydomain.getDim()):
    for j in range(mydomain.getDim()):
       C[i,i,j,j]+=lam
       C[i,j,i,j]+=mu
       C[i,j,j,i]+=mu
  msk=whereZero(x[0])*[1.,0.,0.] \
     +whereZero(x[1])*[0.,1.,0.] \
     +whereZero(x[2])*[0.,0.,1.]
  sigma0=(lam+2./3.*mu)*alpha*(T-T_ref)*kronecker(mydomain)
  mypde.setValue(A=C, X=sigma0, q=msk)
  #... solve pde ...
  u=mypde.getSolution()
  #... calculate von-Mises stress
  g=grad(u)
  sigma=mu*(g+transpose(g))+lam*trace(g)*kronecker(mydomain)-sigma0
  sigma_mises=sqrt(((sigma[0,0]-sigma[1,1])**2+(sigma[1,1]-sigma[2,2])**2+ \
                    (sigma[2,2]-sigma[0,0])**2)/2. \
                   +3*(sigma[0,1]**2 + sigma[1,2]**2 + sigma[2,0]**2))
  #... output ...
  saveVTK("deform.vtu", disp=u, stress=sigma_mises)
\end{python}

\begin{figure}
\centerline{\includegraphics[width=\figwidth]{HeatedBlock}}
\caption{von-Mises Stress and Displacement Vectors}
\label{HEATEDBLOCK FIG 2}
\end{figure}

\noindent Finally, the results can be visualized by calling
\begin{verbatim}
mayavi2 -d deform.vtu -f CellToPointData -m Vectors -m Surface
\end{verbatim}
Note that the filter \text{CellToPointData} is applied to create a smoother
representation of the von-Mises stress.
\fig{HEATEDBLOCK FIG 2} shows the results where the colour of the vertical
planes represent the von-Mises stress and a horizontal plane of arrows shows
the displacements vectors.