1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2003-2018 by The University of Queensland
% http://www.uq.edu.au
%
% Primary Business: Queensland, Australia
% Licensed under the Apache License, version 2.0
% http://www.apache.org/licenses/LICENSE-2.0
%
% Development until 2012 by Earth Systems Science Computational Center (ESSCC)
% Development 2012-2013 by School of Earth Sciences
% Development from 2014 by Centre for Geoscience Computing (GeoComp)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Slip on a Fault}\label{Slip CHAP}
\begin{figure}[ht]
\centerline{\includegraphics{Slip1}}
\caption{Domain $\Omega=[0,1]^2$ with a vertical fault of length $0.5$.}
\label{fig:slip.1}
\end{figure}
%
In this example we illustrate how to calculate the stress distribution around
a fault\index{fault} in the Earth's crust caused by a slip\index{slip} through
an earthquake.
To simplify the presentation we assume a simple domain $\Omega=[0,1]^2$ with
a vertical fault in its center as illustrated in \fig{fig:slip.1}.
We assume that the slip distribution $s_{i}$ on the fault is known.
We want to calculate the distribution of the displacements $u_{i}$\index{displacement}
and stress $\sigma_{ij}$\index{stress} in the domain.
Further, we assume an isotropic, linear elastic material model of the form
\begin{eqnarray} \label{Slip stress}
\sigma_{ij} & = & \lambda u_{k,k} \delta_{ij} + \mu ( u_{i,j} + u_{j,i})
\end{eqnarray}
where $\lambda$ and $\mu$ are the Lam\'e coefficients\index{Lam\'e coefficients}
and $\delta_{ij}$ denotes the Kronecker symbol\index{Kronecker symbol}.
On the boundary the normal stress is given by
\begin{eqnarray} \label{Slip natural fault}
\sigma_{ij}n_{j}=0
\end{eqnarray}
and normal displacements are set to zero:
\begin{eqnarray} \label{Slip constraint}
u_{i}n_{i} =0
\end{eqnarray}
The stress needs to fulfill the momentum equation\index{momentum equation}
\begin{eqnarray}\label{Slip general problem}
- \sigma_{ij,j}=0
\end{eqnarray}
This problem is very similar to the elastic deformation problem presented in \Sec{ELASTIC CHAP}.
However, we need to address an additional challenge: the displacement
$u_{i}$ is in fact discontinuous across the fault, but we are in the
lucky situation that we know the jump of the displacements across the fault.
This is in fact the given slip $s_{i}$.
So we can split the total distribution $u_{i}$ into a component
$v_{i}$ which is continuous across the fault and the known slip $s_{i}$
\begin{eqnarray}\label{Slip Split}
u_{i} = v_{i} + \frac{1}{2} s^{\pm}_{i}
\end{eqnarray}
where $s^{\pm}=s$ when right of the fault and $s^{\pm}=-s$ when left of the fault.
We assume that $s^{\pm}=0$ when sufficiently away from the fault.
We insert this into the stress definition in \eqn{Slip stress}
\begin{eqnarray} \label{Slip stress split}
\sigma_{ij} & = &
\sigma^c_{ij} +
\frac{1}{2} \sigma^s_{ij}
\end{eqnarray}
with
\begin{eqnarray} \label{Slip stress split 1}
\sigma^c_{ij} = \lambda v_{k,k} \delta_{ij} + \mu ( v_{i,j} + v_{j,i})
\end{eqnarray}
and
\begin{eqnarray} \label{Slip stress split 2}
\sigma^s_{ij} = \lambda s^{\pm}_{k,k} \delta_{ij} + \mu ( s^{\pm}_{i,j} + s^{\pm}_{j,i}).
\end{eqnarray}
In fact, $\sigma^s_{ij}$ defines a stress jump across the fault.
An easy way to construct this function is to use a function $\chi$ which is
$1$ on the right and $-1$ on the left side from the fault.
One can then set
\begin{eqnarray} \label{Slip stress split 23 }
\sigma^s_{ij} = \chi \cdot ( \lambda s_{k,k} \delta_{ij} + \mu ( s_{i,j} + s_{j,i}) )
\end{eqnarray}
assuming that $s$ is extended by zero away from the fault.
After inserting \eqn{Slip stress split} into (\ref{Slip general problem}) we
get the differential equation\index{momentum equation}
\begin{eqnarray}\label{Slip general problem 2 }
- \sigma^c_{ij,j}=\frac{1}{2} \sigma^s_{ij,j}
\end{eqnarray}
Together with the definition (\ref{Slip stress split 1}) we have a
differential equation for the continuous function $v_i$.
Notice that the boundary condition (\ref{Slip constraint}) and (\ref{Slip natural fault})
transfer to $v_i$ and $\sigma^c_{ij}$ as $s$ is zero away from the fault.
In \Sec{ELASTIC CHAP} we have discussed how this problem is solved using
the \LinearPDE class. We refer to this section for further details.
To define the fault we use the \class{FaultSystem} class introduced in \Sec{Fault System}.
The following statements define a fault system \var{fs} and add the fault \var{1} to the system:
\begin{python}
fs=FaultSystem(dim=2)
fs.addFault(fs.addFault(V0=[0.5,0.25], strikes=90*DEG, ls=0.5, tag=1)
\end{python}
The fault added starts at point $(0.5,0.25)$ has length $0.5$ and points north.
The main purpose of the \class{FaultSystem} class is to define a
parameterization of the fault using a local coordinate system.
One can inquire the class to get the range used to parameterize a fault.
\begin{python}
p0,p1 = fs.getW0Range(tag=1)
\end{python}
Typically \var{p0} is equal to zero while \var{p1} is equal to the length of the fault.
The parameterization is given as a mapping from a set of local coordinates
onto a parameter range (in our case the range \var{p0} to \var{p1}).
For instance, to map the entire domain \var{mydomain} onto the fault one can
use
\begin{python}
x = mydomain.getX()
p,m = fs.getParametrization(x, tag=1)
\end{python}
Of course there is the problem that not all locations are on the fault.
For those locations which are on the fault \var{m} is set to 1, otherwise 0 is used.
So on return the values of \var{p} define the value of the fault parameterization
(typically the distance from the starting point of the fault along the fault)
where \var{m} is positive.
On all other locations the value of \var{p} is undefined.
Now \var{p} can be used to define a slip distribution on the fault via
\begin{python}
s = m*(p-p0)*(p1-p)/((p1-p0)/2)**2*slip_max*[0.,1.]
\end{python}
Notice the factor \var{m} which ensures that \var{s} is zero away from the fault.
It is important that the slip is zero at the ends of the faults.
We can now put all components together to get the script:
\begin{python}
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.escript.models import FaultSystem
from esys.finley import Rectangle
from esys.weipa import saveVTK
from esys.escript.unitsSI import DEG
#... set some parameters ...
lam=1.
mu=1
slip_max=1.
mydomain = Rectangle(l0=1.,l1=1.,n0=16, n1=16) # n1 needs to be a multiple of 4!
# .. create the fault system
fs=FaultSystem(dim=2)
fs.addFault(V0=[0.5,0.25], strikes=90*DEG, ls=0.5, tag=1)
# ... create a slip distribution on the fault
p, m=fs.getParametrization(mydomain.getX(), tag=1)
p0,p1= fs.getW0Range(tag=1)
s=m*(p-p0)*(p1-p)/((p1-p0)/2)**2*slip_max*[0.,1.]
# ... calculate stress according to slip:
D=symmetric(grad(s))
chi, d=fs.getSideAndDistance(D.getFunctionSpace().getX(), tag=1)
sigma_s=(mu*D+lam*trace(D)*kronecker(mydomain))*chi
#... open symmetric PDE ...
mypde=LinearPDE(mydomain)
mypde.setSymmetryOn()
#... set coefficients ...
C=Tensor4(0., Function(mydomain))
for i in range(mydomain.getDim()):
for j in range(mydomain.getDim()):
C[i,i,j,j]+=lam
C[j,i,j,i]+=mu
C[j,i,i,j]+=mu
# ... fix displacement in normal direction
x=mydomain.getX()
msk=whereZero(x[0])*[1.,0.] + whereZero(x[0]-1.)*[1.,0.] \
+whereZero(x[1])*[0.,1.] + whereZero(x[1]-1.)*[0.,1.]
mypde.setValue(A=C, X=-0.5*sigma_s, q=msk)
#... solve pde ...
mypde.getSolverOptions().setVerbosityOn()
v=mypde.getSolution()
# .. write the displacement to file:
D=symmetric(grad(v))
sigma=(mu*D+lam*trace(D)*kronecker(mydomain))+0.5*sigma_s
saveVTK("slip.vtu", disp=v+0.5*chi*s, stress=sigma)
\end{python}
The script creates the file \file{slip.vtu} which contains the total
displacements and stress.
These values are stored as cell-centered data.
%
\begin{figure} [ht]
\centerline{\includegraphics[width=\figwidth]{Slip2}}
\caption{Total Displacement after the slip event}
\label{fig:slip.2}
\end{figure}
%
See \fig{fig:slip.2} for a visualization of the result.
|