1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
__copyright__ = "Copyright (c) 2020 by University of Queensland http://www.uq.edu.au"
__license__ = "Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0"
__credits__ = "Lutz Gross, Andrea Codd"
from esys.escript import *
from esys.escript.linearPDEs import LinearSinglePDE, SolverOptions
from esys.escript.pdetools import Locator
import cmath
import numpy as np
class MT2DTEModel(object):
"""
This class is a simple wrapper for 2D MT PDE model in the TE mode.
MT
curl ((1/sigma) curl H) + i omega H = 0
curl ((1/mu) curl E) + i omega sigma E = 0
2D reduces to
-div (1/mu grad u) + i omega sigma u = 0
where
u = Ex is transverse component of electric field
mu is magnetic permeability
sigma is electrical conductivity
omega is angular frequency
i = sqrt(-1)
Domain typically includes air and ground layers.
Conductivity sigma = 0 in the air layer.
Boundary conditions included in the class are
- Ex is set to one at the top of the domain, typically at the top of an air layer.
- At the bottom of the domain Ex=0 (set `fixBottom`=True)
or radiation condition dEx/dn+k*Ex=0 with k^2=2*pi*f*mu*sigma is set
It has a function to set ground property
- setConductivity
and functions to output solutions
- getImpedance
- getApparentResitivity
- getPhase.
"""
def __init__(self, domain, fixBottom=False, useFastSolver=False, mu=4*np.pi*1e-7):
"""
:param domain: the domain
:type domain: `Domain`
:param fixBottom: if true the electric field at the bottom is set to zero.
Otherwise radiation condition is set.
:type fixBottom: `bool`
:param useFastSolver: use multigrid solver. (not supported yet)
:type useFastSolver: `bool`
"""
self.domain=domain
self.mu=mu
self.sigma=None
self.sigma_boundary=None
self.fixBottom=fixBottom
self.useFastSolver=False
self.pde=self.__createPDE()
def __createPDE(self):
"""
Create the PDE and set boundary conditions.
"""
pde=LinearSinglePDE(self.domain, isComplex=True,)
optionsG=pde.getSolverOptions()
optionsG.setSolverMethod(SolverOptions.DIRECT)
pde.setSymmetryOn()
if self.useFastSolver and hasFeature('trilinos'): # ignored for now!
optionsG.setPackage(SolverOptions.TRILINOS)
optionsG.setPreconditioner(SolverOptions.AMG)
pde.setValue(A=kronecker(self.domain.getDim()))
z=self.domain.getX()[self.domain.getDim()-1]
t=sup(z)
if self.fixBottom:
b=inf(z)
pde.setValue(q=whereZero(z-t)+whereZero(z-b), r=(z-b)/(t-b))
else:
pde.setValue(q=whereZero(z-t), r=1.)
return pde
def setConductivity(self, sigma, sigma_boundary=None):
"""
sets the conductivity `sigma`.
:param sigma: conductivity distribution.
:type sigma: `Data` or `float`
:param sigma_boundary: conductivity distribution on bottom boundary.
Only required if fixBottom is not set and `sigma` cannot be
interpolated to boundary.
:type sigma: `Data` or `float`
"""
self.sigma=interpolate(sigma, Function(self.domain))
if not self.fixBottom:
if sigma_boundary:
self.sigma_boundary=interpolate(sigma_boundary, FunctionOnBoundary(self.domain))
else:
self.sigma_boundary=interpolate(sigma, FunctionOnBoundary(self.domain))
return self
def getImpedance(self, f=1.):
"""
return the impedance Zxy for frequency `f` in [Hz]. The electric field
and magnetic field cane be accessed as attributes `Ex` and `Hy` after
completion.
:param f: frequency in [Hz]
:type f: `float`
:returns: Zxy
"""
o=2*np.pi*f
self.pde.setValue(D=1j*o*self.mu*self.sigma)
if not self.fixBottom:
z=FunctionOnBoundary(self.domain).getX()[self.domain.getDim()-1]
b=inf(z)
k=(1+1j)*sqrt(o*self.mu*self.sigma_boundary/2)
self.pde.setValue(d=k*whereZero(z-b))
Ex=self.pde.getSolution()
g=grad(Ex, ReducedFunction(self.domain))
self.Hy=-1./(1j*o*self.mu)*g[self.domain.getDim()-1]
self.Ex=interpolate(Ex, self.Hy.getFunctionSpace())
Zxy=self.Ex/self.Hy
return Zxy
def getApparentResitivity(self, f, Zxy):
"""
return the apparent resistivity from a given frequency `f` and impedance `Zxy`
:param f: frequency in [Hz]
:type f: `float`
:param Zxy: impedance
:type Zxy: `Data` or `np.array`
"""
o=2*np.pi*f
return abs(Zxy)**2/(self.mu*o)
def getPhase(self, f, Zxy):
"""
return the phase in [deg] from a given frequency `f` and impedance `Zxy`
:param f: frequency in [Hz]
:type f: `float`
:param Zxy: impedance
:type Zxy: `Data` or `np.array`
"""
return atan2(Zxy.imag(),Zxy.real())/np.pi*180
class MT2DTMModel(object):
"""
This a class for solving the 2D MT model in the TM mode.
MT
curl ((1/sigma)curl H) + i omega H = 0
curl ((1/mu)curl E) + i omega sigma E = 0
2D
-div (1/sigma grad u) + i omega mu u = 0
where
u = Hx is transverse component of magnetic field
mu is magnetic permeability
sigma is electrical conductivity
omega is angular frequency
i = sqrt(-1)
Hx is set to one in the air layer and the interface of the air layer and the subsurface.
At the bottom of the domain Ex=0 (set `fixBottom`=True)
or radiation condition dEx/dn+k*Ex=0 with k^2=2*pi*f*mu*sigma is set.
"""
def __init__(self, domain, fixBottom=False, airLayer=None, useFastSolver=False, mu=4*np.pi*1e-7):
"""
:param domain: the domain
:type domain: `Domain`
:param fixBottom: if true the potential at all faces except the top is set to zero.
Otherwise on the the bottom is set to zero.
:type fixBottom: `bool`
:param airLayer: defines the air layer including the interface between air layer and subsurface.
If set to `None` then just the (plane) top surface is used.
If set to a `float` then the region above `airlayer` (including the interface)
is defined as air layer.
Otherwise `airlayer` needs to be defined as `Data` with value `1` marking
the air layer and its interface.
:type airLayer: `None`, `float`, `Data`
:param useFastSolver: use multigrid solver. This may fail.
:type useFastSolver: `bool`
:note: the attribute `airLayer` gives the mask for the air layer
including the interface between the air layer and the subsurface.
"""
self.domain=domain
self.mu=mu
self.rho=None
self.rho_boundary=None
self.fixBottom=fixBottom
self.useFastSolver=False
self.pde=self.__createPDE(airLayer)
def __createPDE(self, airLayer=None):
pde=LinearSinglePDE(self.domain, isComplex=True,)
optionsG=pde.getSolverOptions()
optionsG.setSolverMethod(SolverOptions.DIRECT)
pde.setSymmetryOn()
if self.useFastSolver and hasFeature('trilinos'): # ignored for now!
optionsG.setPackage(SolverOptions.TRILINOS)
optionsG.setPreconditioner(SolverOptions.AMG)
optionsG.setTrilinosParameter("problem: symmetric", True)
z=self.domain.getX()[self.domain.getDim()-1]
b=inf(z)
if airLayer is None:
self.airLayer=whereNonNegative(z-sup(z))
elif isinstance(airLayer, float) or isinstance(airLayer, int):
self.airLayer=whereNonNegative(z-airLayer)
else:
self.airLayer=wherePositive(interpolate(airLayer, Solution(self.domain)))
if self.fixBottom:
pde.setValue(q=self.airLayer+whereZero(z-b), r=self.airLayer)
else:
pde.setValue(q=self.airLayer, r=self.airLayer)
return pde
def setResistivity(self, rho, rho_boundary=None):
"""
sets the resistivity.
:param rho: resistivity distribution.
:type rho: `Data`
:param rho_boundary: rho distribution on bottom boundary. Only required if fixBottom is set and
`rho` cannot be interpolated to boundary.
:type sigma: `Data`
"""
self.rho=interpolate(rho, Function(self.domain))
if not self.fixBottom:
if rho_boundary:
self.rho_boundary=interpolate(rho_boundary, FunctionOnBoundary(self.domain))
else:
self.rho_boundary=interpolate(rho, FunctionOnBoundary(self.domain))
self.pde.setValue(A=self.rho*kronecker(self.domain.getDim()))
return self
def getImpedance(self, f=1.):
"""
return the impedance Zyx and the electric field Ex for frequency `f`
:param f: frequency in [Hz]
:type f: `float`
:returns: Zyx
"""
o=2*np.pi*f
self.pde.setValue(D=1j*o*self.mu)
if not self.fixBottom:
z=FunctionOnBoundary(self.domain).getX()[self.domain.getDim()-1]
b=inf(z)
k=(1+1j)*sqrt(o*self.mu*self.rho_boundary/2)
self.pde.setValue(d=k*whereZero(z-b))
Hx=self.pde.getSolution()
g=grad(Hx, ReducedFunction(self.domain))
self.Ey=self.rho*g[self.domain.getDim()-1]
self.Hxi=interpolate(Hx, self.Ey.getFunctionSpace())
Zyx=self.Ey/self.Hxi
return Zyx
def getApparentResitivity(self, f, Zyx):
"""
return the apparent resistivity from a given frequency `f` and impedance `Zyx`
:param f: frequency in Hz
:type f: `float`
:param Zyx: impedance
:type Zyx: `Data` or `np.array`
"""
o=2*np.pi*f
return abs(Zyx)**2/(self.mu*o)
def getPhase(self, f, Zyx):
"""
return the phase in [deg] from a given frequency f [Hz] and impedance Zyx
:param f: frequency in Hz
:type f: `float`
:param Zyx: impedance
:type Zyx: `Data` or `np.array`
"""
return atan2(Zyx.imag(),Zyx.real())/np.pi*180
|