1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
__copyright__ = "Copyright (c) 2020 by University of Queensland http://www.uq.edu.au"
__license__ = "Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0"
__credits__ = "Lutz Gross, Andrea Codd"
from esys.escript import *
from esys.escript.linearPDEs import LinearSinglePDE, SolverOptions
class MagneticModel2D(object):
"""
This class is a simple wrapper for a 2D magnetic PDE model.
It solves PDE
- div (grad u) = -div(k Bh)
where
k is magnetic susceptibility and
Bh is background magnetic field.
u is computed anomaly potential
Possible boundary conditions are Dirichlet on
- one corner (bottom left),
- vertical sides, or
- base.
Requires domain and possibly boundary condition choice.
Default boundary conditions
- fix the left bottom corner.
Otherwise add
- fixVert = True (for all vertical surfaces fixed) or
- fixBase = True (for base fixed).
It has functions
- setSusceptibility
- getSusceptibility
- setBackgroundMagneticField
- getAnomalyPotential
- getMagneticFieldAnomaly.
"""
def __init__(self, domain, fixVert=False, fixBase=False):
"""
Initialise the class with domain and boundary conditions.
Setup PDE, susceptibility and background magnetic field.
: param domain: the domain
: type domain: `Domain`
: param fixBase: if true the magnetic field at the bottom is set to zero.
: type fixBase: `bool`
: param fixVert: if true the magnetic field on all vertical sudes is set to zero.
: type fixVert: `bool`
: if fixBase and fixVert are False then magnetic field is set to zero at bottom, front, left corner.
"""
self.domain = domain
self.fixVert = fixVert
self.fixBase = fixBase
assert self.domain.getDim() == 2
self.pde=self.__createPDE()
self.setSusceptibility()
self.setBackgroundMagneticField()
def __createPDE(self):
"""
Create the PDE and set boundary conditions.
"""
pde=LinearSinglePDE(self.domain, isComplex=False)
optionsG=pde.getSolverOptions()
optionsG.setSolverMethod(SolverOptions.PCG)
pde.setSymmetryOn()
pde.setValue(A=kronecker(self.domain.getDim()))
x=self.domain.getX()
pde.setValue(A=kronecker(self.domain))
if self.fixVert:
pde.setValue(q = whereZero(x[0]-inf(x[0])) + whereZero(x[0]-sup(x[0])))
elif self.fixBase:
pde.setValue(q=whereZero(x[1]-inf(x[1])))
else:
pde.setValue(q = whereZero(x[0]-inf(x[0]))*whereZero(x[1]-inf(x[1])))
if hasFeature('trilinos'):
optionsG.setPackage(SolverOptions.TRILINOS)
optionsG.setPreconditioner(SolverOptions.AMG)
return pde
def setSusceptibility(self, k=0):
"""
set susceptibility
: param k: susceptibility
: type k: `Data` or `float`
"""
self.k=k
self.reset=True
def getSusceptibility(self):
"""
returns susceptibility
: returns: k
"""
return self.k
def setBackgroundMagneticField(self, Bh=[ 0., 45000.0] ):
"""
sets background magnetic field in nT
"""
self.Bh=Bh
self.reset=True
def getAnomalyPotential(self):
"""
get the potential of the the magnetic anomaly
"""
if self.reset:
self.pde.setValue(X = self.k*self.Bh)
return self.pde.getSolution()
def getMagneticFieldAnomaly(self):
"""
get the total Magnetic field
"""
return -grad(self.getAnomalyPotential(), ReducedFunction(self.pde.getDomain()))
class MagneticModel3D(object):
"""
This class is a simple wrapper for a 3D magnetic forward model.
It solves PDE
- div (grad u) = -div(k Bh)
where
k is magnetic susceptibility and
Bh is background magnetic field.
Possible boundary conditions are Dirichlet on
- one corner (bottom left),
- vertical sides, or
- base.
Input is domain and boundary condition choice.
Default boundary conditions fix the left front bottom corner.
Otherwise add
- fixVert = True or
- fixBase = True.
It has functions
- setSusceptibility
- getSusceptibility
- setBackgroundMagneticField
- getAnomalyPotential
- getMagneticFieldAnomaly.
"""
def __init__(self, domain, fixVert=False, fixBase=False):
"""
Initialise the class with domain and boundary conditions.
Setup PDE, susceptibility and background magnetic field.
:param domain: the domain
:type domain: `Domain`
:param fixBase: if true the magnetic field at the bottom is set to zero. .
:type fixBottom: `bool`
:param fixVert: if true the magnetic field on all vertical sudes is set to zero.
:type fixBottom: `bool`
:if fixBottom and fixBase are False then magnetic field is set to zero at bottom, front, left corner.
"""
self.domain = domain
self.fixVert = fixVert
self.fixBase = fixBase
assert self.domain.getDim() == 3
self.pde=self.__createPDE()
self.setSusceptibility()
self.setBackgroundMagneticField()
def __createPDE(self):
"""
Create the PDE and set boundary conditions.
"""
pde=LinearSinglePDE(self.domain, isComplex=False)
optionsG=pde.getSolverOptions()
optionsG.setSolverMethod(SolverOptions.PCG)
pde.setSymmetryOn()
pde.setValue(A=kronecker(self.domain.getDim()))
x=self.domain.getX()
pde.setValue(A=kronecker(self.domain))
if self.fixVert:
pde.setValue(q = whereZero(x[0]-inf(x[0])) + whereZero(x[0]-sup(x[0])) + whereZero(x[1]-inf(x[1])) + whereZero(x[1]-sup(x[1])))
elif self.fixBase:
pde.setValue(q=whereZero(x[2]-inf(x[2])))
else:
pde.setValue(q = whereZero(x[0]-inf(x[0]))*whereZero(x[1]-inf(x[1])) * whereZero(x[2]-inf(x[2])))
if hasFeature('trilinos'):
optionsG.setPackage(SolverOptions.TRILINOS)
optionsG.setPreconditioner(SolverOptions.AMG)
return pde
def setSusceptibility(self, k=0):
"""
sets susceptibility
: param k: susceptibility
: type k: `Data` or `float`
"""
self.k=k
self.reset=True
def getSusceptibility(self):
"""
returns the susceptibility
: returns: k
"""
return self.k
def setBackgroundMagneticField(self, Bh=[ 0., 45000.0, 0.] ):
"""
sets background magnetic field in nT
"""
self.Bh=Bh
self.reset=True
def getAnomalyPotential(self):
"""
get the potential of the the magnetic anomaly
"""
if self.reset:
self.pde.setValue(X = self.k*self.Bh)
return self.pde.getSolution()
def getMagneticFieldAnomaly(self):
"""
get the total Magnetic field
"""
return -grad(self.getAnomalyPotential(), ReducedFunction(self.pde.getDomain()))
|