1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""Base classes for forward models"""
from __future__ import division, print_function
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
__all__ = ['ForwardModel','ForwardModelWithPotential']
from esys.downunder.coordinates import makeTransformation
from esys.escript.linearPDEs import LinearSinglePDE
from esys.escript.util import *
import numpy as np
class ForwardModel(object):
"""
An abstract forward model that can be plugged into a cost function.
Subclasses need to implement `getDefect()`, `getGradient()`, and possibly
`getArguments()` and 'getCoordinateTransformation'.
"""
def __init__(self):
pass
def getArguments(self, x):
return ()
def getCoordinateTransformation(self):
return None
def getDefect(self, x, *args):
raise NotImplementedError
def getGradient(self, x, *args):
raise NotImplementedError
class ForwardModelWithPotential(ForwardModel):
"""
Base class for a forward model using a potential such as magnetic or
gravity. It defines a cost function:
defect = 1/2 sum_s integrate( ( weight_i[s] * ( r_i - data_i[s] ) )**2 )
where s runs over the survey, weight_i are weighting factors, data_i are
the data, and r_i are the results produced by the forward model.
It is assumed that the forward model is produced through postprocessing
of the solution of a potential PDE.
"""
def __init__(self, domain, w, data, coordinates=None,
fixPotentialAtBottom=False,
tol=1e-8):
"""
initializes a new forward model with potential.
:param domain: domain of the model
:type domain: `Domain`
:param w: data weighting factors
:type w: ``Vector`` or list of ``Vector``
:param data: data
:type data: ``Vector`` or list of ``Vector``
:param coordinates: defines coordinate system to be used
:type coordinates: `ReferenceSystem` or `SpatialCoordinateTransformation`
:param fixPotentialAtBottom: if true potential is fixed to zero at the bottom of the domain
in addition to the top.
:type fixPotentialAtBottom: ``bool``
:param tol: tolerance of underlying PDE
:type tol: positive ``float``
"""
super(ForwardModelWithPotential, self).__init__()
self.__domain = domain
self.__trafo = makeTransformation(domain, coordinates)
try:
n=len(w)
m=len(data)
if not m == n:
raise ValueError("Length of weight and data must be the same.")
self.__weight = w
self.__data = data
except TypeError:
self.__weight = [w]
self.__data = [data]
BX = boundingBox(domain)
DIM = domain.getDim()
x = domain.getX()
self.__pde=LinearSinglePDE(domain)
self.__pde.getSolverOptions().setTolerance(tol)
self.__pde.setSymmetryOn()
z=x[DIM-1]
q0=whereZero(z-BX[DIM-1][1])
if fixPotentialAtBottom: q0+=whereZero(z-BX[DIM-1][0])
self.__pde.setValue(q=q0)
self.edge_lengths=np.asarray(boundingBoxEdgeLengths(domain))
self.diameter=1./sqrt(sum(1./self.edge_lengths**2))
self.__origweight=[]
for s in range(len(self.__weight)):
# save a copy of the original weights in case of rescaling
self.__origweight.append(1.*self.__weight[s])
if not self.__trafo.isCartesian():
fd=1./self.__trafo.getScalingFactors()
fw=self.__trafo.getScalingFactors()*sqrt(self.__trafo.getVolumeFactor())
for s in range(len(self.__weight)):
self.__weight[s] = fw * self.__weight[s]
self.__data[s] = fd * self.__data[s]
def _rescaleWeights(self, scale=1., fetch_factor=1.):
"""
rescales the weights such that
*sum_s integrate( ( weight_i[s] *data_i[s]) (weight_j[s]*1/L_j) * L**2 * fetch_factor )=scale*
"""
if not scale > 0:
raise ValueError("Value for scale must be positive.")
A=0
# copy back original weights before rescaling
self.__weight=[1.*ow for ow in self.__origweight]
for s in range(len(self.__weight)):
if self.__data[s].getShape() == ():
ff=self.__weight[s]**2*self.__data[s]/length(self.edge_lengths)
else:
ff=inner(self.__weight[s], self.__data[s]) * inner(self.__weight[s], 1/self.edge_lengths)
A += integrate(abs(ff * fetch_factor))
if A > 0:
A=sqrt(scale/A)/self.diameter
if not self.__trafo.isCartesian():
A*=self.__trafo.getScalingFactors()*sqrt(self.__trafo.getVolumeFactor())
for s in range(len(self.__weight)):
self.__weight[s]*=A
else:
raise ValueError("Rescaling of weights failed.")
def getDomain(self):
"""
Returns the domain of the forward model.
:rtype: `Domain`
"""
return self.__domain
def getMisfitWeights(self):
"""
Returns the weights of the misfit function
:rtype: ``list`` of ``Data``
"""
return self.__weight
def getData(self):
"""
Returns the data
:rtype: ``list`` of ``Data``
"""
return self.__data
def getDataFunctionSpace(self):
"""
Returns the ``FunctionSpace`` of the data
:rtype: ``FunctionSpace``
"""
return self.getData()[0].getFunctionSpace()
def getCoordinateTransformation(self):
"""
returns the coordinate transformation being used
:rtype: ``CoordinateTransformation``
"""
return self.__trafo
def getPDE(self):
"""
Return the underlying PDE.
:rtype: `LinearPDE`
"""
return self.__pde
def _getDefect(self, result):
"""
Returns the defect value.
:param result: a result vector
:type result: `Vector`
:rtype: ``float``
"""
A=0.
for s in range(len(self.__weight)):
A += integrate( inner(self.__weight[s], self.__data[s]-result)**2 )
return A/2
def getDefectGradient(self, result):
Y=0.
for s in range(len(self.__weight)):
Y = inner(self.__weight[s], self.__data[s]-result) * self.__weight[s] + Y
return Y
def getSurvey(self, index=None):
"""
Returns the pair (data_index, weight_index), where data_i is the data
of survey i, weight_i is the weighting factor for survey i.
If index is None, all surveys will be returned in a pair of lists.
"""
if index is None:
return self.__data, self.__weight
if index>=len(self.__data):
raise IndexError("Forward model only has %d surveys"%len(self.__data))
return self.__data[index], self.__weight[index]
|