1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import division, print_function
"""Forward models for magnetic fields"""
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
__all__ = ['MagneticModel', 'SelfDemagnetizationModel', 'MagneticIntensityModel']
from .base import ForwardModelWithPotential
from esys.escript import Scalar
from esys.escript.util import *
class MagneticModel(ForwardModelWithPotential):
"""
Forward Model for magnetic inversion as described in the inversion
cookbook.
"""
def __init__(self, domain, w, B, background_magnetic_flux_density,
coordinates=None, fixPotentialAtBottom=False, tol=1e-8):
"""
Creates a new magnetic model on the given domain with one or more
surveys (w, B).
:param domain: domain of the model
:type domain: `Domain`
:param w: data weighting factors
:type w: ``Vector`` or list of ``Vector``
:param B: magnetic field data
:type B: ``Vector`` or list of ``Vector``
:param tol: tolerance of underlying PDE
:type tol: positive ``float``
:param background_magnetic_flux_density: background magnetic flux
density (in Tesla) with components (B_east, B_north, B_vertical)
:type background_magnetic_flux_density: ``Vector`` or list of `float`
:param coordinates: defines coordinate system to be used
:type coordinates: `ReferenceSystem` or `SpatialCoordinateTransformation`
:param fixPotentialAtBottom: if true potential is fixed to zero at the
bottom of the domain in addition to the top
:type fixPotentialAtBottom: ``bool``
"""
super(MagneticModel, self).__init__(domain, w, B, coordinates, fixPotentialAtBottom, tol)
background_magnetic_flux_density=interpolate(background_magnetic_flux_density, self.getDataFunctionSpace() )
if not self.getCoordinateTransformation().isCartesian():
s = self.getCoordinateTransformation().getScalingFactors()
v = self.getCoordinateTransformation().getVolumeFactor()
self.__B_r = background_magnetic_flux_density * s * v
self.__B_b = background_magnetic_flux_density / s
A = self.getPDE().createCoefficient("A")
fw = s**2 * v
for i in range(self.getDomain().getDim()):
A[i,i]=fw[i]
self.getPDE().setValue(A=A)
else: # cartesian
self.getPDE().setValue(A=kronecker(self.getDomain()))
self.__B_r = background_magnetic_flux_density
self.__B_b = background_magnetic_flux_density
def rescaleWeights(self, scale=1., k_scale=1.):
"""
rescales the weights such that
*sum_s integrate( ( w_i[s] *B_i[s]) (w_j[s]*1/L_j) * L**2 * (background_magnetic_flux_density_j[s]*1/L_j) * k_scale )=scale*
:param scale: scale of data weighting factors
:type scale: positive ``float``
:param k_scale: scale of susceptibility.
:type k_scale: ``Scalar``
"""
self._rescaleWeights(scale, inner(self.__B_r,1/self.edge_lengths ) * k_scale)
def getArguments(self, k):
"""
Returns precomputed values shared by `getDefect()` and `getGradient()`.
:param k: susceptibility
:type k: ``Scalar``
:return: scalar magnetic potential and corresponding magnetic field
:rtype: ``Scalar``, ``Vector``
"""
phi = self.getPotential(k)
magnetic_flux_density = k * self.__B_b -grad(phi)
return phi, magnetic_flux_density
def getPotential(self, k):
"""
Calculates the magnetic potential for a given susceptibility.
:param k: susceptibility
:type k: ``Scalar``
:return: magnetic potential
:rtype: ``Scalar``
"""
pde=self.getPDE()
pde.resetRightHandSideCoefficients()
pde.setValue(X = k* self.__B_r)
phi=pde.getSolution()
return phi
def getDefect(self, k, phi, magnetic_flux_density):
"""
Returns the value of the defect.
:param k: susceptibility
:type k: ``Scalar``
:param phi: corresponding potential
:type phi: ``Scalar``
:param magnetic_flux_density: magnetic field
:type magnetic_flux_density: ``Vector``
:rtype: ``float``
"""
return self._getDefect(magnetic_flux_density)
def getGradient(self, k, phi, magnetic_flux_density):
"""
Returns the gradient of the defect with respect to susceptibility.
:param k: susceptibility
:type k: ``Scalar``
:param phi: corresponding potential
:type phi: ``Scalar``
:param magnetic_flux_density: magnetic field
:type magnetic_flux_density: ``Vector``
:rtype: ``Scalar``
"""
Y=self.getDefectGradient(magnetic_flux_density)
pde=self.getPDE()
pde.resetRightHandSideCoefficients()
pde.setValue(X=Y)
YT=pde.getSolution()
return inner(grad(YT),self.__B_r) -inner(Y,self.__B_b)
class SelfDemagnetizationModel(ForwardModelWithPotential):
"""
Forward Model for magnetic inversion with self-demagnetization as
described in the inversion cookbook.
"""
def __init__(self, domain, w, B, background_magnetic_flux_density,
coordinates=None, fixPotentialAtBottom=False, tol=1e-8):
"""
Creates a new magnetic model on the given domain with one or more
surveys (w, B).
:param domain: domain of the model
:type domain: `Domain`
:param w: data weighting factors
:type w: ``Vector`` or list of ``Vector``
:param B: magnetic field data
:type B: ``Vector`` or list of ``Vector``
:param background_magnetic_flux_density: background magnetic flux
density (in Tesla) with components (B_east, B_north, B_vertical)
:type background_magnetic_flux_density: ``Vector`` or list of `float`
:param coordinates: defines coordinate system to be used
:type coordinates: `ReferenceSystem` or `SpatialCoordinateTransformation`
:param fixPotentialAtBottom: if true potential is fixed to zero at the
bottom of the domain in addition to the top
:type fixPotentialAtBottom: ``bool``
:param tol: tolerance of underlying PDE
:type tol: positive ``float``
"""
super(SelfDemagnetizationModel, self).__init__(domain, w, B, coordinates, fixPotentialAtBottom, tol)
#=========================================================
background_magnetic_flux_density = interpolate(background_magnetic_flux_density, self.getDataFunctionSpace())
if not self.getCoordinateTransformation().isCartesian():
s = self.getCoordinateTransformation().getScalingFactors()
v = self.getCoordinateTransformation().getVolumeFactor()
self.__B_r = background_magnetic_flux_density * s * v
self.__B_b = background_magnetic_flux_density / s
self.__fw = s**2 * v
else: # cartesian
self.__fw = 1
self.__B_r = background_magnetic_flux_density
self.__B_b = background_magnetic_flux_density
# keep track of k used to build PDE:
self.__last_k = None
# this is just the initial set_up
A=self.getPDE().createCoefficient("A")
for i in range(self.getDomain().getDim()):
A[i,i]=1.
self.getPDE().setValue(A=A)
def rescaleWeights(self, scale=1., k_scale=1.):
"""
rescales the weights such that
*sum_s integrate( ( w_i[s] *B_i[s]) (w_j[s]*1/L_j) * L**2 * (background_magnetic_flux_density_j[s]*1/L_j) * k_scale )=scale*
:param scale: scale of data weighting factors
:type scale: positive ``float``
:param k_scale: scale of susceptibility.
:type k_scale: ``Scalar``
"""
self._rescaleWeights(scale, inner(self.__B_r,1/self.edge_lengths ) * k_scale)
def getArguments(self, k):
"""
Returns precomputed values shared by `getDefect()` and `getGradient()`.
:param k: susceptibility
:type k: ``Scalar``
:return: scalar magnetic potential and corresponding magnetic field
:rtype: ``Scalar``, ``Vector``
"""
phi = self.getPotential(k)
grad_phi=grad(phi)
magnetic_flux_density = k * self.__B_b -(1+k)*grad_phi
return phi, grad_phi, magnetic_flux_density
def __updateA(self, k):
"""
updates PDE coefficient if PDE is used with new k
"""
pde=self.getPDE()
if self.__last_k is not k:
A=pde.getCoefficient('A')
if self.getCoordinateTransformation().isCartesian():
for i in range(self.getDomain().getDim()):
A[i,i] = 1+k
else:
for i in range(self.getDomain().getDim()):
A[i,i] = (1+k)*self.__fw[i]
self.__last_k = k
pde.setValue(A=A)
def getPotential(self, k):
"""
Calculates the magnetic potential for a given susceptibility.
:param k: susceptibility
:type k: ``Scalar``
:return: magnetic potential
:rtype: ``Scalar``
"""
self.__updateA(k)
pde=self.getPDE()
pde.resetRightHandSideCoefficients()
pde.setValue(X = k*self.__B_r)
phi=pde.getSolution()
return phi
def getDefect(self, k, phi, grad_phi, magnetic_flux_density):
"""
Returns the value of the defect.
:param k: susceptibility
:type k: ``Scalar``
:param phi: corresponding potential
:type phi: ``Scalar``
:param magnetic_flux_density: magnetic field
:type magnetic_flux_density: ``Vector``
:rtype: ``float``
"""
return self._getDefect(magnetic_flux_density)
def getGradient(self, k, phi, grad_phi, magnetic_flux_density):
"""
Returns the gradient of the defect with respect to susceptibility.
:param k: susceptibility
:type k: ``Scalar``
:param phi: corresponding potential
:type phi: ``Scalar``
:param magnetic_flux_density: magnetic field
:type magnetic_flux_density: ``Vector``
:rtype: ``Scalar``
"""
self.__updateA(k)
Y=self.getDefectGradient(magnetic_flux_density)
pde=self.getPDE()
pde.resetRightHandSideCoefficients()
pde.setValue(X=(1+k)*Y)
grad_YT=grad(pde.getSolution())
if self.getCoordinateTransformation().isCartesian(): # then b_r=B_b
return inner(grad_YT-Y, self.__B_r-grad_phi)
else:
return inner(grad_YT,self.__B_r-grad_phi)+inner(Y,grad_phi-self.__B_b)
class MagneticIntensityModel(ForwardModelWithPotential):
"""
Forward Model for magnetic intensity inversion as described in the inversion
cookbook.
"""
def __init__(self, domain, w, b, background_magnetic_flux_density,
coordinates=None, fixPotentialAtBottom=False, tol=1e-8):
"""
Creates a new magnetic intensity model on the given domain with one or more
surveys (w, b).
:param domain: domain of the model
:type domain: `Domain`
:param w: data weighting factors
:type w: ``Scalar`` or list of ``Scalar``
:param b: magnetic intensity field data
:type b: ``Scalar`` or list of ``Scalar``
:param tol: tolerance of underlying PDE
:type tol: positive ``float``
:param background_magnetic_flux_density: background magnetic flux
density (in Tesla) with components (B_east, B_north, B_vertical)
:type background_magnetic_flux_density: ``Vector`` or list of `float`
:param coordinates: defines coordinate system to be used
:type coordinates: None
:param fixPotentialAtBottom: if true potential is fixed to zero at the
bottom of the domain in addition to the top
:type fixPotentialAtBottom: ``bool``
"""
super(MagneticIntensityModel, self).__init__(domain, w, b, coordinates, fixPotentialAtBottom, tol)
background_magnetic_flux_density=interpolate(background_magnetic_flux_density, self.getDataFunctionSpace())
if not self.getCoordinateTransformation().isCartesian(): # need to be checked!
s = self.getCoordinateTransformation().getScalingFactors()
v = self.getCoordinateTransformation().getVolumeFactor()
self.__B_r = background_magnetic_flux_density * s * v
self.__B_b = background_magnetic_flux_density / s
A = self.getPDE().createCoefficient("A")
fw = s**2 * v
for i in range(self.getDomain().getDim()):
A[i,i]=fw[i]
self.getPDE().setValue(A=A)
else: # cartesian
self.getPDE().setValue(A=kronecker(self.getDomain()))
self.__B_r = background_magnetic_flux_density
self.__B_b = background_magnetic_flux_density
self.__normalized_B_b=normalize(self.__B_b)
def rescaleWeights(self, scale=1., k_scale=1.):
"""
rescales the weights such that
*sum_s integrate( ( w_i[s] *B_i[s]) (w_j[s]*1/L_j) * L**2 * (background_magnetic_flux_density_j[s]*1/L_j) * k_scale )=scale*
:param scale: scale of data weighting factors
:type scale: positive ``float``
:param k_scale: scale of susceptibility.
:type k_scale: ``Scalar``
"""
self._rescaleWeights(scale, inner(self.__B_r,1/self.edge_lengths ) * k_scale)
def getArguments(self, k):
"""
Returns precomputed values shared by `getDefect()` and `getGradient()`.
:param k: susceptibility
:type k: ``Scalar``
:return: scalar magnetic potential and corresponding magnetic field
:rtype: ``Scalar``, ``Vector``
"""
phi = self.getPotential(k)
magnetic_flux_density = k * self.__B_b -grad(phi)
return phi, magnetic_flux_density
def getPotential(self, k):
"""
Calculates the magnetic potential for a given susceptibility.
:param k: susceptibility
:type k: ``Scalar``
:return: magnetic potential
:rtype: ``Scalar``
"""
pde=self.getPDE()
pde.resetRightHandSideCoefficients()
pde.setValue(X = k* self.__B_r)
phi=pde.getSolution()
return phi
def getDefect(self, k, phi, magnetic_flux_density):
"""
Returns the value of the defect.
:param k: susceptibility
:type k: ``Scalar``
:param phi: corresponding potential
:type phi: ``Scalar``
:param magnetic_flux_density: magnetic field
:type magnetic_flux_density: ``Vector``
:rtype: ``float``
"""
weights=self.getMisfitWeights()
data=self.getData()
A=0.
for s in xrange(len(weights)):
A += integrate( (weights[s]*(inner(self.__normalized_B_b, magnetic_flux_density)-data[s]) )**2 )
return A/2
def getGradient(self, k, phi, magnetic_flux_density):
"""
Returns the gradient of the defect with respect to susceptibility.
:param k: susceptibility
:type k: ``Scalar``
:param phi: corresponding potential
:type phi: ``Scalar``
:param magnetic_flux_density: magnetic field
:type magnetic_flux_density: ``Vector``
:rtype: ``Scalar``
"""
weights=self.getMisfitWeights()
data=self.getData()
Y=Scalar(0.,magnetic_flux_density.getFunctionSpace())
for s in xrange(len(weights)):
Y+=weights[s]**2*(data[s]-inner(self.__normalized_B_b, magnetic_flux_density))
pde=self.getPDE()
pde.resetRightHandSideCoefficients()
pde.setValue(X=Y*self.__normalized_B_b)
YT=pde.getSolution()
return inner(grad(YT),self.__B_r) -Y*inner(self.__normalized_B_b,self.__B_b)
|