1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
#
# AXI-SYMMETRIC NEWTONIAN MODEL ; UPDATED LAGRANGIAN FORMULATION
#
#
# step 1 rho*(v_star-v) = dt * (sigma'_ij,j-teta3*p,i+f_i)
# step 2 dp=-dt*B*(v_j,j+teta1*v_star_j,j-dt*teta1*((1-teta3)*p_,jj+teta2*dp_,jj))
# step 3 rho*(v+-v) = -dt*((1-teta3)*p_,jj+teta2*dp_,jj)
# step 3b p+=1/2(p+dp+abs(p+dp))
# step 4 sigma'i+_ij,j=f(v+,p+,...)
#
#
from esys.escript import *
from esys.escript.linearPDEs import LinearSinglePDE, LinearPDESystem
from esys.dudley import Rectangle
from esys.weipa import saveVTK
nel = 20
H = 0.5
L = 1.0
eta = 1.0 # shear viscosity
ro = 1.0
g = 1.00
alpha_w = 1.00
alpha = 1.00*1000000.
Pen=0.
B=100.
nstep = 3000
dt = 1.
small = EPSILON
w_step=max(int(nstep/50),1)*0+1
toler = 0.001
teta1 = 0.5
teta2 = 0.5
teta3 = 1 # =0 split A; =1 split B
# create domain:
dom=Rectangle(int(nel*L/min(L,H)),int(nel*H/min(L,H)),order=1, l0=L, l1=H)
x=dom.getX()
momentumStep1=LinearPDESystem(dom)
momentumStep1.setValue(q=whereZero(x[0])*[1.,0.]+whereZero(x[1])*[0.,1.]) # fix x0=0 and x1=0
face_mask=whereZero(FunctionOnBoundary(dom).getX()[1])
pressureStep2=LinearSinglePDE(dom)
pressureStep2.setReducedOrderOn()
pressureStep2.setValue(q=whereZero(x[0]-L)+whereZero(x[1]-H))
momentumStep3=LinearPDESystem(dom)
momentumStep3.setValue(q=whereZero(x[0])*[1.,0.]+whereZero(x[1])*[0.,1.])
#
# initial values:
#
U=Vector(0.,Solution(dom))
p=ro*g*(L-ReducedSolution(dom).getX()[0])*(H-ReducedSolution(dom).getX()[1])/3
p=ro*g*(H-ReducedSolution(dom).getX()[1])
dev_stress=Tensor(0.,Function(dom))
t=dt
istep=0
while istep < nstep:
istep=istep+1
print("time step :",istep," t = ",t)
r=Function(dom).getX()[0]
r_b=FunctionOnBoundary(dom).getX()[0]
print("volume : ",integrate(r))
#
# step 1:
#
# calculate normal
n_d=dom.getNormal()
t_d=matrixmult(numpy.array([[0.,-1.],[1.,0]]),n_d)
sigma_d=(sign(inner(t_d,U))*alpha_w*t_d-n_d)*Pen*clip(inner(n_d,U),0.)
print("sigma_d =",inf(sigma_d),sup(sigma_d))
momentumStep1.setValue(D=r*ro*kronecker(dom),
Y=r*ro*U+dt*r*[0.,-ro*g],
X=-dt*r*(dev_stress-teta3*p*kronecker(dom)),
y=sigma_d*face_mask*r_b)
U_star=momentumStep1.getSolution()
saveVTK("u.vtu",u=U_star,u0=U)
#
# step 2:
#
# U2=U+teta1*(U_star-U)
U2=U+teta1*U_star
gg2=grad(U2)
div_U2=gg2[0,0]+gg2[1,1]+U2[0]/r
grad_p=grad(p)
pressureStep2.setValue(A=r*dt*B*teta1*teta2/ro*dt*kronecker(dom),
D=r,
Y=-dt*B*r*div_U2,
X=-r*B*dt**2/ro*teta1*(1-teta3)*grad_p)
dp=pressureStep2.getSolution()
#
# step 3:
#
p2=(1-teta3)*p+teta2*dp
grad_p2=grad(p2)
momentumStep3.setValue(D=r*ro*kronecker(dom),
Y=r*(ro*U_star-dt*teta2*grad_p2))
U_new=momentumStep3.getSolution()
#
# update:
#
p+=dp
U=U_new
print("U:",inf(U),sup(U))
print("P:",inf(p),sup(p))
p_pos=clip(p,small)
gg=grad(U)
vol=gg[0,0]+gg[1,1]+U[0]/r
gamma=sqrt(2*((gg[0,0]-vol/3)**2+(gg[1,1]-vol/3)**2+(U[0]/r-vol/3)**2+(gg[1,0]+gg[0,1])**2/2))
m=whereNegative(eta*gamma-alpha*p_pos)
eta_d=m*eta+(1.-m)*alpha*p_pos/(gamma+small)
print("viscosity =",inf(eta_d),sup(eta_d))
dev_stress=eta_d*(symmetric(gg)-2./3.*vol*kronecker(dom))
#
# step size control:
#
len=inf(dom.getSize())
dt1=inf(dom.getSize()/(length(U)+small))
dt2=inf(0.5*ro*(len**2)/eta_d)
dt=dt1*dt2/(dt1+dt2)
print("new step size = ",dt)
#
# update geometry
#
dom.setX(dom.getX()+U*dt)
t=t+dt
if (istep-1)%w_step==0:saveVTK("u.%d.vtu"%((istep-1)/w_step),p=p,eta=eta_d,U=U_star,U_star=U_star,gamma=gamma)
if istep == 3: 1/0
|