File: seismic_wave.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (360 lines) | stat: -rw-r--r-- 12,106 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""
seismic wave propagation

:var __author__: name of author
:var __licence__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""

__author__="Lutz Gross, l.gross@uq.edu.au"

from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.dudley import Brick
from esys.weipa import saveVTK
import time

WORKDIR="./waves/"
output=True
n_end=10000

resolution=1000.  # number of elements per m in the finest region
resolution=400.  # number of elements per m in the finest region
o=1              # element order

l=100000.           # width and length m (without obsorber)
h=30000.            # height in m        (without obsorber)
d_absorber=l*0.10   # thickness of absorbing layer

l_sand=20000.          # thickness of sand region on surface
h_sand=5000.           # thickness of sand layer under the water

l_x_water=10000.       # length of water in x
l_y_water=10000.       # length of water in y
h_water=2000.          # depth of water region

x_sand=l/2-l_x_water/2-l_sand # x coordinate of location of sand region (without obsorber)
y_sand=l/2-l_y_water/2-l_sand # y coordinate of location of sand region (without obsorber)


# origin
origin={"x": -d_absorber, "y" : -d_absorber , "z" : -h-d_absorber }
# location and geometrical size of event reltive to origin:
xc=[l*0.2,l*0.3,-h*0.7]
src_radius  = 2*resolution
# direction of event:
event=numpy.array([0.,0.,1.])*1.e6
# time and length of the event
tc=2.
tc_length=0.5

# material properties:
bedrock=0
absorber=1
water=2
sand=3

rho_tab={}
rho_tab[bedrock]=8e3
rho_tab[absorber]=rho_tab[bedrock]
rho_tab[water]=1e3
rho_tab[sand]=5e3

mu_tab={}
mu_tab[bedrock]=1.7e11
mu_tab[absorber]=mu_tab[bedrock]
mu_tab[water]=0.
mu_tab[sand]=1.5e10

lmbd_tab={}
lmbd_tab[bedrock]=1.7e11
lmbd_tab[absorber]=lmbd_tab[bedrock]
lmbd_tab[water]=1.e9
lmbd_tab[sand]=1.5e10

eta_tab={}
eta_tab[absorber]=-log(0.05)*sqrt(rho_tab[absorber]*(lmbd_tab[absorber]+2*mu_tab[absorber]))/d_absorber
eta_tab[sand]=eta_tab[absorber]/40.
eta_tab[water]=eta_tab[absorber]/40.
eta_tab[bedrock]=eta_tab[absorber]/40.


# material properties:
bedrock=0
absorber=1
water=2
sand=3

rho={}
rho[bedrock]=8e3
rho[absorber]=rho[bedrock]
rho[water]=1e3
rho[sand]=5e3

mu={}
mu[bedrock]=1.7e11
mu[absorber]=mu[bedrock]
mu[water]=0.
mu[sand]=1.5e10

lmbd={}
lmbd[bedrock]=1.7e11
lmbd_absorber=lmbd[bedrock]
lmbd[water]=1.e9
lmbd[sand]=1.5e10

eta={}
eta[absorber]=-log(0.05)*sqrt(rho[absorber]*(lmbd_absorber+2*mu[absorber]))/d_absorber
eta[sand]=eta[absorber]/40.
eta[water]=eta[absorber]/40.
eta[bedrock]=eta[absorber]/40.

if output:
   print("event location = ",xc)
   print("radius of event = ",src_radius)
   print("time of event = ",tc)
   print("length of event = ",tc_length)
   print("direction = ",event)

t_end=30.
dt_write=0.1


def getDomain():
    """
    this defines a dom as a brick of length and width l and hight h

      
    """
    global netotal
    
    v_p={}
    for tag in sorted(rho_tab.keys()):
       v_p[tag]=sqrt((2*mu_tab[tag]+lmbd_tab[tag])/rho_tab[tag])
    v_p_ref=min(v_p.values())
    print("velocities: bedrock = %s, sand = %s, water =%s, absorber =%s, reference =%s"%(v_p[bedrock],v_p[sand],v_p[water],v_p[absorber],v_p_ref))

    sections={}
    sections["x"]=[d_absorber, x_sand, l_sand, l_x_water, l_sand, l-x_sand-2*l_sand-l_x_water, d_absorber]
    sections["y"]=[d_absorber, y_sand, l_sand, l_y_water, l_sand, l-y_sand-2*l_sand-l_y_water, d_absorber]
    sections["z"]=[d_absorber,h-h_water-h_sand,h_sand,h_water]
    if output:
      print("sections x = ",sections["x"])
      print("sections y = ",sections["y"])
      print("sections z = ",sections["z"])

    mats= [ 
            [ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber] ],

            [ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber] ],

            [ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, bedrock , sand    , sand    , sand    , bedrock , absorber],
              [absorber, bedrock , sand    , sand    , sand    , bedrock , absorber],
              [absorber, bedrock , sand    , sand    , sand    , bedrock , absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber] ],

            [ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, bedrock , sand    , sand    , sand    , bedrock , absorber],
              [absorber, bedrock , sand    , water   , sand    , bedrock , absorber],
              [absorber, bedrock , sand    , sand    , sand    , bedrock , absorber],
              [absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
              [absorber, absorber, absorber, absorber, absorber, absorber, absorber] ] ]
    
    num_elem={}
    for d in sections:
       num_elem[d]=[]
       for i in range(len(sections[d])):
           if d=="x":
              v_p_min=v_p[mats[0][0][i]]
              for q in range(len(sections["y"])):
                 for r in range(len(sections["z"])):
                    v_p_min=min(v_p[mats[r][q][i]],v_p_min)
           elif d=="y":
              v_p_min=v_p[mats[0][i][0]]
              for q in range(len(sections["x"])):
                 for r in range(len(sections["z"])):
                    v_p_min=min(v_p[mats[r][i][q]],v_p_min)
           elif d=="z":
              v_p_min=v_p[mats[i][0][0]]
              for q in range(len(sections["x"])):
                 for r in range(len(sections["y"])):
                    v_p_min=min(v_p[mats[i][r][q]],v_p_min)
           num_elem[d].append(max(1,int(sections[d][i] * v_p_ref/v_p_min /resolution+0.5)))
       
    ne_x=sum(num_elem["x"])
    ne_y=sum(num_elem["y"])
    ne_z=sum(num_elem["z"])
    netotal=ne_x*ne_y*ne_z
    if output: print("grid : %s x %s x %s (%s elements)"%(ne_x,ne_y,ne_z,netotal))
    dom=Brick(ne_x,ne_y,ne_z,l0=o*ne_x,l1=o*ne_y,l2=o*ne_z,order=o)
    x_old=dom.getX()
    x_new=0

    for d in sections:
        if d=="x": 
            i=0
            f=[1,0,0]
        if d=="y": 
            i=1
            f=[0,1,0]
        if d=="z": 
            i=2
            f=[0,0,1]
        x=x_old[i]

        p=origin[d]
        ne=0
        s=0.
 
        for i in range(len(sections[d])-1):
            msk=whereNonPositive(x-o*ne+0.5)
            s=s*msk + (sections[d][i]/(o*num_elem[d][i])*(x-o*ne)+p)*(1.-msk)
            ne+=num_elem[d][i]
            p+=sections[d][i]
        x_new=x_new + s * f
    dom.setX(x_new)

    fs=Function(dom)
    x=Function(dom).getX()
    x0=x[0]
    x1=x[1]
    x2=x[2]
    p_z=origin["z"]
    for i in range(len(mats)):
       f_z=wherePositive(x2-p_z)*wherePositive(x2-p_z+sections["z"][i])
       p_y=origin["y"]
       for j in range(len(mats[i])):
         f_y=wherePositive(x1-p_y)*wherePositive(x1-p_z+sections["y"][j])
         p_x=origin["x"]
         for k in range(len(mats[i][j])):
             f_x=wherePositive(x0-p_x)*wherePositive(x0-p_x+sections["x"][k]) 
             fs.setTags(mats[i][j][k],f_x*f_y*f_z)
             p_x+=sections["x"][k]
         p_y+=sections["y"][j]
       p_z+=sections["z"][i]
    return dom

def getMaterialProperties(dom):
   rho =Scalar(rho_tab[bedrock],Function(dom))
   eta =Scalar(eta_tab[bedrock],Function(dom))
   mu  =Scalar(mu_tab[bedrock],Function(dom))
   lmbd=Scalar(lmbd_tab[bedrock],Function(dom))
   tags=Scalar(bedrock,Function(dom))
   
   for tag in sorted(rho_tab.keys()):
      rho.setTaggedValue(tag,rho_tab[tag])
      eta.setTaggedValue(tag,eta_tab[tag])
      mu.setTaggedValue(tag,mu_tab[tag])
      lmbd.setTaggedValue(tag,lmbd_tab[tag])
      tags.setTaggedValue(tag,tag)
   return rho,mu,lmbd,eta

def wavePropagation(dom,rho,mu,lmbd,eta):
   x=Function(dom).getX()
   # ... open new PDE ...
   mypde=LinearPDE(dom)
   mypde.setSolverMethod(LinearPDE.LUMPING)
   k=kronecker(Function(dom))
   mypde.setValue(D=k*rho)

   dt=(1./5.)*inf(dom.getSize()/sqrt((2*mu+lmbd)/rho))
   if output: print("time step size = ",dt)
   # ... set initial values ....
   n=0
   t=0
   t_write=0.
   n_write=0
   # initial value of displacement at point source is constant (U0=0.01)
   # for first two time steps
   u=Vector(0.,Solution(dom))
   v=Vector(0.,Solution(dom))
   a=Vector(0.,Solution(dom))
   a2=Vector(0.,Solution(dom))
   v=Vector(0.,Solution(dom))

   if not os.path.isdir(WORKDIR): os.mkdir(WORKDIR)

   starttime = time.clock()
   while t<t_end and n<n_end:
     if output: print(n+1,"-th time step t ",t+dt," max u and F: ",Lsup(u), end=' ')
     # prediction:
     u_pr=u+dt*v+(dt**2/2)*a+(dt**3/6)*a2
     v_pr=v+dt*a+(dt**2/2)*a2
     a_pr=a+dt*a2
     # ... get current stress ....
     eps=symmetric(grad(u_pr))
     stress=lmbd*trace(eps)*k+2*mu*eps
     # ... force due to event:
     if abs(t-tc)<5*tc_length:
        F=exp(-((t-tc)/tc_length)**2)*exp(-(length(x-xc)/src_radius)**2)*event
        if output: print(Lsup(F))
     else:
        if output: print(0.)
     # ... get new acceleration ....
     mypde.setValue(X=-stress,Y=F-eta*v_pr)
     a=mypde.getSolution()
     # ... get new displacement ...
     da=a-a_pr
     u=u_pr+(dt**2/12.)*da
     v=v_pr+(5*dt/12.)*da
     a2+=da/dt
     # ... save current acceleration in units of gravity and displacements 
     if output:
          if t>=t_write: 
             saveVTK(os.path.join(WORKDIR,"disp.%i.vtu"%n_write),displacement=u, amplitude=length(u))
             t_write+=dt_write
             n_write+=1
     t+=dt
     n+=1

   endtime = time.clock()
   totaltime = endtime-starttime
   global netotal
   print(">>number of elements: %s, total time: %s, per time step: %s <<"%(netotal,totaltime,totaltime/n))
if __name__ =="__main__":
   dom=getDomain()
   rho,mu,lmbd,eta=getMaterialProperties(dom)
   wavePropagation(dom,rho,mu,lmbd,eta)