1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
seismic wave propagation
:var __author__: name of author
:var __licence__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Lutz Gross, l.gross@uq.edu.au"
from esys.escript import *
from esys.escript.linearPDEs import LinearPDE
from esys.dudley import Brick
from esys.weipa import saveVTK
import time
WORKDIR="./waves/"
output=True
n_end=10000
resolution=1000. # number of elements per m in the finest region
resolution=400. # number of elements per m in the finest region
o=1 # element order
l=100000. # width and length m (without obsorber)
h=30000. # height in m (without obsorber)
d_absorber=l*0.10 # thickness of absorbing layer
l_sand=20000. # thickness of sand region on surface
h_sand=5000. # thickness of sand layer under the water
l_x_water=10000. # length of water in x
l_y_water=10000. # length of water in y
h_water=2000. # depth of water region
x_sand=l/2-l_x_water/2-l_sand # x coordinate of location of sand region (without obsorber)
y_sand=l/2-l_y_water/2-l_sand # y coordinate of location of sand region (without obsorber)
# origin
origin={"x": -d_absorber, "y" : -d_absorber , "z" : -h-d_absorber }
# location and geometrical size of event reltive to origin:
xc=[l*0.2,l*0.3,-h*0.7]
src_radius = 2*resolution
# direction of event:
event=numpy.array([0.,0.,1.])*1.e6
# time and length of the event
tc=2.
tc_length=0.5
# material properties:
bedrock=0
absorber=1
water=2
sand=3
rho_tab={}
rho_tab[bedrock]=8e3
rho_tab[absorber]=rho_tab[bedrock]
rho_tab[water]=1e3
rho_tab[sand]=5e3
mu_tab={}
mu_tab[bedrock]=1.7e11
mu_tab[absorber]=mu_tab[bedrock]
mu_tab[water]=0.
mu_tab[sand]=1.5e10
lmbd_tab={}
lmbd_tab[bedrock]=1.7e11
lmbd_tab[absorber]=lmbd_tab[bedrock]
lmbd_tab[water]=1.e9
lmbd_tab[sand]=1.5e10
eta_tab={}
eta_tab[absorber]=-log(0.05)*sqrt(rho_tab[absorber]*(lmbd_tab[absorber]+2*mu_tab[absorber]))/d_absorber
eta_tab[sand]=eta_tab[absorber]/40.
eta_tab[water]=eta_tab[absorber]/40.
eta_tab[bedrock]=eta_tab[absorber]/40.
# material properties:
bedrock=0
absorber=1
water=2
sand=3
rho={}
rho[bedrock]=8e3
rho[absorber]=rho[bedrock]
rho[water]=1e3
rho[sand]=5e3
mu={}
mu[bedrock]=1.7e11
mu[absorber]=mu[bedrock]
mu[water]=0.
mu[sand]=1.5e10
lmbd={}
lmbd[bedrock]=1.7e11
lmbd_absorber=lmbd[bedrock]
lmbd[water]=1.e9
lmbd[sand]=1.5e10
eta={}
eta[absorber]=-log(0.05)*sqrt(rho[absorber]*(lmbd_absorber+2*mu[absorber]))/d_absorber
eta[sand]=eta[absorber]/40.
eta[water]=eta[absorber]/40.
eta[bedrock]=eta[absorber]/40.
if output:
print("event location = ",xc)
print("radius of event = ",src_radius)
print("time of event = ",tc)
print("length of event = ",tc_length)
print("direction = ",event)
t_end=30.
dt_write=0.1
def getDomain():
"""
this defines a dom as a brick of length and width l and hight h
"""
global netotal
v_p={}
for tag in sorted(rho_tab.keys()):
v_p[tag]=sqrt((2*mu_tab[tag]+lmbd_tab[tag])/rho_tab[tag])
v_p_ref=min(v_p.values())
print("velocities: bedrock = %s, sand = %s, water =%s, absorber =%s, reference =%s"%(v_p[bedrock],v_p[sand],v_p[water],v_p[absorber],v_p_ref))
sections={}
sections["x"]=[d_absorber, x_sand, l_sand, l_x_water, l_sand, l-x_sand-2*l_sand-l_x_water, d_absorber]
sections["y"]=[d_absorber, y_sand, l_sand, l_y_water, l_sand, l-y_sand-2*l_sand-l_y_water, d_absorber]
sections["z"]=[d_absorber,h-h_water-h_sand,h_sand,h_water]
if output:
print("sections x = ",sections["x"])
print("sections y = ",sections["y"])
print("sections z = ",sections["z"])
mats= [
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ],
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ],
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, bedrock , sand , sand , sand , bedrock , absorber],
[absorber, bedrock , sand , sand , sand , bedrock , absorber],
[absorber, bedrock , sand , sand , sand , bedrock , absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ],
[ [absorber, absorber, absorber, absorber, absorber, absorber, absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, bedrock , sand , sand , sand , bedrock , absorber],
[absorber, bedrock , sand , water , sand , bedrock , absorber],
[absorber, bedrock , sand , sand , sand , bedrock , absorber],
[absorber, bedrock , bedrock , bedrock , bedrock , bedrock , absorber],
[absorber, absorber, absorber, absorber, absorber, absorber, absorber] ] ]
num_elem={}
for d in sections:
num_elem[d]=[]
for i in range(len(sections[d])):
if d=="x":
v_p_min=v_p[mats[0][0][i]]
for q in range(len(sections["y"])):
for r in range(len(sections["z"])):
v_p_min=min(v_p[mats[r][q][i]],v_p_min)
elif d=="y":
v_p_min=v_p[mats[0][i][0]]
for q in range(len(sections["x"])):
for r in range(len(sections["z"])):
v_p_min=min(v_p[mats[r][i][q]],v_p_min)
elif d=="z":
v_p_min=v_p[mats[i][0][0]]
for q in range(len(sections["x"])):
for r in range(len(sections["y"])):
v_p_min=min(v_p[mats[i][r][q]],v_p_min)
num_elem[d].append(max(1,int(sections[d][i] * v_p_ref/v_p_min /resolution+0.5)))
ne_x=sum(num_elem["x"])
ne_y=sum(num_elem["y"])
ne_z=sum(num_elem["z"])
netotal=ne_x*ne_y*ne_z
if output: print("grid : %s x %s x %s (%s elements)"%(ne_x,ne_y,ne_z,netotal))
dom=Brick(ne_x,ne_y,ne_z,l0=o*ne_x,l1=o*ne_y,l2=o*ne_z,order=o)
x_old=dom.getX()
x_new=0
for d in sections:
if d=="x":
i=0
f=[1,0,0]
if d=="y":
i=1
f=[0,1,0]
if d=="z":
i=2
f=[0,0,1]
x=x_old[i]
p=origin[d]
ne=0
s=0.
for i in range(len(sections[d])-1):
msk=whereNonPositive(x-o*ne+0.5)
s=s*msk + (sections[d][i]/(o*num_elem[d][i])*(x-o*ne)+p)*(1.-msk)
ne+=num_elem[d][i]
p+=sections[d][i]
x_new=x_new + s * f
dom.setX(x_new)
fs=Function(dom)
x=Function(dom).getX()
x0=x[0]
x1=x[1]
x2=x[2]
p_z=origin["z"]
for i in range(len(mats)):
f_z=wherePositive(x2-p_z)*wherePositive(x2-p_z+sections["z"][i])
p_y=origin["y"]
for j in range(len(mats[i])):
f_y=wherePositive(x1-p_y)*wherePositive(x1-p_z+sections["y"][j])
p_x=origin["x"]
for k in range(len(mats[i][j])):
f_x=wherePositive(x0-p_x)*wherePositive(x0-p_x+sections["x"][k])
fs.setTags(mats[i][j][k],f_x*f_y*f_z)
p_x+=sections["x"][k]
p_y+=sections["y"][j]
p_z+=sections["z"][i]
return dom
def getMaterialProperties(dom):
rho =Scalar(rho_tab[bedrock],Function(dom))
eta =Scalar(eta_tab[bedrock],Function(dom))
mu =Scalar(mu_tab[bedrock],Function(dom))
lmbd=Scalar(lmbd_tab[bedrock],Function(dom))
tags=Scalar(bedrock,Function(dom))
for tag in sorted(rho_tab.keys()):
rho.setTaggedValue(tag,rho_tab[tag])
eta.setTaggedValue(tag,eta_tab[tag])
mu.setTaggedValue(tag,mu_tab[tag])
lmbd.setTaggedValue(tag,lmbd_tab[tag])
tags.setTaggedValue(tag,tag)
return rho,mu,lmbd,eta
def wavePropagation(dom,rho,mu,lmbd,eta):
x=Function(dom).getX()
# ... open new PDE ...
mypde=LinearPDE(dom)
mypde.setSolverMethod(LinearPDE.LUMPING)
k=kronecker(Function(dom))
mypde.setValue(D=k*rho)
dt=(1./5.)*inf(dom.getSize()/sqrt((2*mu+lmbd)/rho))
if output: print("time step size = ",dt)
# ... set initial values ....
n=0
t=0
t_write=0.
n_write=0
# initial value of displacement at point source is constant (U0=0.01)
# for first two time steps
u=Vector(0.,Solution(dom))
v=Vector(0.,Solution(dom))
a=Vector(0.,Solution(dom))
a2=Vector(0.,Solution(dom))
v=Vector(0.,Solution(dom))
if not os.path.isdir(WORKDIR): os.mkdir(WORKDIR)
starttime = time.clock()
while t<t_end and n<n_end:
if output: print(n+1,"-th time step t ",t+dt," max u and F: ",Lsup(u), end=' ')
# prediction:
u_pr=u+dt*v+(dt**2/2)*a+(dt**3/6)*a2
v_pr=v+dt*a+(dt**2/2)*a2
a_pr=a+dt*a2
# ... get current stress ....
eps=symmetric(grad(u_pr))
stress=lmbd*trace(eps)*k+2*mu*eps
# ... force due to event:
if abs(t-tc)<5*tc_length:
F=exp(-((t-tc)/tc_length)**2)*exp(-(length(x-xc)/src_radius)**2)*event
if output: print(Lsup(F))
else:
if output: print(0.)
# ... get new acceleration ....
mypde.setValue(X=-stress,Y=F-eta*v_pr)
a=mypde.getSolution()
# ... get new displacement ...
da=a-a_pr
u=u_pr+(dt**2/12.)*da
v=v_pr+(5*dt/12.)*da
a2+=da/dt
# ... save current acceleration in units of gravity and displacements
if output:
if t>=t_write:
saveVTK(os.path.join(WORKDIR,"disp.%i.vtu"%n_write),displacement=u, amplitude=length(u))
t_write+=dt_write
n_write+=1
t+=dt
n+=1
endtime = time.clock()
totaltime = endtime-starttime
global netotal
print(">>number of elements: %s, total time: %s, per time step: %s <<"%(netotal,totaltime,totaltime/n))
if __name__ =="__main__":
dom=getDomain()
rho,mu,lmbd,eta=getMaterialProperties(dom)
wavePropagation(dom,rho,mu,lmbd,eta)
|