File: slip_stress_mesh_old.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (656 lines) | stat: -rw-r--r-- 24,862 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""

generates   dudley mesh simple vertical fault

THIS CODE CREATES RICH CONTACT ELEMENTS AND RICH FACE ELEMENTS
with fix for contact elements at FAULT ENDS

:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""

__author__="Louise Kettle"

from esys.escript import *
from numpy import zeros,float64,array,size

#... generate domain ...
ne = 10
width  = 100000.
height =  30000.
fstart=array([width/2.,7.*width/16.,3.*height/8.])
fend=array([width/2.,9.*width/16.,5.*height/8.])

def faultL(l0,l1, l2,ne0, ne1, ne2,contact=False,xstart=zeros(3),xend=zeros(3)):
   meshfaultL=open('meshfault3D.fly','w')

   FaultError1="ERROR: fault defined on or too close to an outer surface"
   FaultError2="ERROR: the mesh is too coarse for fault"

   N0=ne0+1
   N1=ne1+1
   N2=ne2+1
   if (N0<=N1 and N0<=N2):
     if (N1 <= N2):
        M0=1
        M1=N0
        M2=N0*N1
        M0i=1
        M1i=ne0
        M2i=ne0*ne1
     else:
        M0=1
        M2=N0
        M1=N0*N2
        M0i=1
        M2i=ne0
        M1i=ne0*ne2
   elif (N1<=N2 and N1<=N0):
     if (N2 <= N0): 
        M1=1
        M2=N1
        M0=N2*N1
        M1i=1
        M2i=ne1
        M0i=ne2*ne1
     else:
        M1=1
        M0=N1
        M2=N1*N0
        M1i=1
        M0i=ne1
        M2i=ne0*ne1
   else:
     if (N0 <= N1):
        M2=1
        M0=N2
        M1=N2*N0
        M2i=1
        M0i=ne2
        M1i=ne0*ne2
     else: 
        M2=1
        M1=N2
        M0=N1*N2
        M2i=1
        M1i=ne2
        M0i=ne2*ne1
   
   dim=3
   Element_numNodes=8
   Element_Num=ne0*ne1*ne2
   if contact==False:
      numNodes=N0*N1*N2
   
   else:
      # define double (contact element) nodes on interior of fault 
      i0start=round(xstart[0]*ne0/l0)
      i1start=round(xstart[1]*ne1/l1)
      i2start=round(xstart[2]*ne2/l2)
      i0end=round(xend[0]*ne0/l0)
      i1end=round(xend[1]*ne1/l1)
      i2end=round(xend[2]*ne2/l2)
      n0double=int(i0end)-int(i0start)
      n1double=int(i1end)-int(i1start)
      n2double=int(i2end)-int(i2start)
      if (i0start == 0) or (i1start==0) or (i2start==0):
         raise FaultError1
         
      if (i0end == ne0) or (i1end==ne1) or (i2end==ne2):
         raise FaultError1

      if n0double==0:
         numNodes=N0*N1*N2+(n1double-1)*(n2double-1)

      elif n1double==0:
         numNodes=N0*N1*N2+(n0double-1)*(n2double-1) 
     
      elif n2double==0:
         numNodes=N0*N1*N2+(n0double-1)*(n1double-1)

   # define nodes for normal elements
   # there are N0*N1*N2 normal nodes
   
   Node=zeros([3,numNodes],float64)
   Node_ref=zeros(numNodes,float64)
   Node_DOF=zeros(numNodes,float64)
   Node_tag=zeros(numNodes,float64)

   meshfaultL.write("KettleFault\n")
   #print 'Nodes'
   meshfaultL.write("%dD-nodes %d\n"%(dim,numNodes))

   for i2 in range(N2):
      for i1 in range (N1):
         for i0 in range(N0):
            k=  i0 + N0*i1 + N0*N1*i2 # M0*i0+M1*i1+M2*i2;
            Node_ref[k]= i0 + N0*i1 + N0*N1*i2
            # no periodic boundary conditions
            Node_DOF[k]=Node_ref[k]
            Node_tag[k]=0
            Node[0][k]=(i0)*l0/(N0-1)
            Node[1][k]=(i1)*l1/(N1-1)
            Node[2][k]=(i2)*l2/(N2-1)

   # define double nodes on fault (will have same coordinates as some of nodes already defined)
   # only get double nodes on INTERIOR of fault

   if contact==True:
      Fault_NE=N0*N1*N2   
      if n0double==0:
        if(n1double<=n2double):       
             M1f=1
             M2f=n1double-1
        else:
             M2f=1
             M1f=n2double-1  
    
        for i2 in range(n2double-1):
           for i1 in range(n1double-1):
              # CHANGED:
              k=Fault_NE+i1+(n1double-1)*i2
              Node_ref[k]= k #Fault_NE + i1 + (n1double-1)*i2
              Node_DOF[k]=Node_ref[k]
              Node_tag[k]=1
              Node[0][k]=i0start*l0/ne0
              Node[1][k]=i1start*l1/ne1 + (i1+1)*l1/ne1
              Node[2][k]=i2start*l2/ne2 + (i2+1)*l2/ne2
      # elif n1double==0:
      # elif n2double==0:
      print("fstart = ",[i0start*l0/ne0, i1start*l1/ne1                  , i2start*l2/ne2])
      print("fend = ", [i0start*l0/ne0 , i1start*l1/ne1 + n1double*l1/ne1, i2start*l2/ne2 + n2double*l2/ne2])

   # write nodes to file
   for i in range(numNodes):
       meshfaultL.write("%d %d %d"%(Node_ref[i],Node_DOF[i],Node_tag[i]))
       for j in range(dim):
           meshfaultL.write(" %lf"%Node[j][i])
       meshfaultL.write("\n")




   # defining interior elements
   # there are ne0*ne1*ne2 interior elements

   Element_Nodes=zeros([8,ne0*ne1*ne2],float64)
   Element_ref=zeros(ne0*ne1*ne2,float64)
   Element_tag=zeros(ne0*ne1*ne2,float64)

   #print 'Interior elements'

   print("M0,M1,M2",M0,M1,M2)

   for i2 in range(ne2):
      for i1 in range (ne1):
         for i0 in range(ne0):
            k=i0 + ne0*i1 + ne0*ne1*i2;
            # define corner node (node0)
            node0=i0 + N0*i1 + N0*N1*i2;
            Element_ref[k]=k
            Element_tag[k]=0
            # for hex8 the interior elements are specified by 8 nodes
            #CHANGED:
            Element_Nodes[0][k]=node0;
            Element_Nodes[1][k]=node0+1;
            Element_Nodes[2][k]=node0+N0+1;
            Element_Nodes[3][k]=node0+N0;
            Element_Nodes[4][k]=node0+N0*N1;
            Element_Nodes[5][k]=node0+N0*N1+1;
            Element_Nodes[6][k]=node0+N0*N1+N0+1;
            Element_Nodes[7][k]=node0+N0*N1+N0;

   if contact==True:
      if n0double==0:
         x0s= i0start*l0/ne0
         x1s= i1start*l1/ne1
         x2s= i2start*l2/ne2
         x0e= i0end*l0/ne0
         x1e= i1end*l1/ne1
         x2e= i2end*l2/ne2
         #print "x0s,x1s,x2s,x0e,x1e,x2e",  x0s,x1s,x2s,x0e,x1e,x2e
         if (n1double==1) or (n2double==1):
            raise FaultError2
         for i2 in range(n2double):
            for i1 in range(n1double):
               # here the coordinates of kfault and kold are the same
               # Ref for fault node (only on interior nodes of fault):
               if (i1>0) and (i2>0):
                  kfault=Fault_NE+(i1-1.)+(n1double-1)*(i2-1.)
                  #print kfault , Node[0][int(kfault)],Node[1][int(kfault)],Node[2][int(kfault)]
               else:
                  kfault=0.
               # determine bottom corner node of each element

               # Ref for normal interior node:
               kold=int(i0start+N0*(i1start + i1) + (N0*N1)*(i2start+i2))
               #print kold, Node[0][kold],Node[1][kold],Node[2][kold]
               # Ref for interior element:
               kint=int(i0start + ne0*(i1start+i1) + (ne0*ne1)*(i2start+i2))          
               #print kint, Element_Nodes[0][kint]

               x0= (i0start)*l0/ne0
               x1= (i1start+i1)*l1/ne1
               x2= (i2start+i2)*l2/ne2
               
               # for x0 > xstart we need to overwrite old Nodes in interior element references 
               # with fault nodes:

               # for the interior elements with x1<x1s and x2<x2s the only nodes need changing 
               # are on the fault:
               if (i1==0) and (i2==0): 
                  # nearest fault node:
                  kfaultref=int(Fault_NE+i1+(n1double-1)*i2)
               elif (i1==0): 
                  # nearest fault node
                  kfaultref=int(Fault_NE+i1+(i2-1.)*(n1double-1))
               elif (i2==0): 
                  # nearest fault node
                  kfaultref=int(Fault_NE+(i1-1.) + i2*(n1double-1))
               else: 
                  # looking at element with fault node on bottom corner
                  kfaultref=int(kfault)

               #print x0,x1,x2
               #print kold, Node[0][kold],Node[1][kold],Node[2][kold]
               #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]

               # overwrite 4 outer corner elements of fault (only one node changed)
               if (i1==0 and i2==0):           
                  #nodecheck=int(Element_Nodes[7][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[7][kint]=kfaultref

                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]


               elif (i1==0 and i2==n2double-1):

                  #nodecheck=int(Element_Nodes[3][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[3][kint]=kfaultref

                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]

               elif (i1==n1double-1 and i2==0):
                  #nodecheck=int(Element_Nodes[4][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[4][kint]=kfaultref
                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]

               elif (i1==n1double-1 and i2==n2double-1):
                  #nodecheck=int(Element_Nodes[0][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[0][kint]=kfaultref
                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]

               # overwrite 4 sides of fault (only 2 nodes changed)
               elif (i1==0):

                  #nodecheck=int(Element_Nodes[3][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #nodecheck=int(Element_Nodes[7][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[3][kint]=kfaultref
                  kfaultref1=int(kfaultref+(n1double-1))
                  Element_Nodes[7][kint]=kfaultref1

                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]
                  #print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1]



               elif (i1==n1double-1):

                  #nodecheck=int(Element_Nodes[0][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #nodecheck=int(Element_Nodes[4][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]


                  Element_Nodes[0][kint]=kfaultref                     
                  kfaultref1=kfaultref+(n1double-1)
                  Element_Nodes[4][kint]=kfaultref1

                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]
                  #print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1]

               elif (i2==0):

                  #nodecheck=int(Element_Nodes[4][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #nodecheck=int(Element_Nodes[7][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[4][kint]=kfaultref
                  kfaultref1=kfaultref+1
                  Element_Nodes[7][kint]=kfaultref1

                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]
                  #print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1]

               elif (i2==n2double-1):

                  #nodecheck=int(Element_Nodes[0][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #nodecheck=int(Element_Nodes[3][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

                  Element_Nodes[0][kint]=kfaultref
                  kfaultref1=kfaultref+1
                  Element_Nodes[3][kint]=kfaultref1

                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]
                  #print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1]

               # overwrite interior fault elements (4 nodes changed)
               else:
                  #nodecheck=int(Element_Nodes[0][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #print kfaultref, Node[0][kfaultref],Node[1][kfaultref],Node[2][kfaultref]

                  Element_Nodes[0][kint]=kfaultref
                  #if (x1<x1e and x2<x2e):
                  kfaultref1=kfaultref+1
                  kfaultref2=kfaultref+(n1double-1)
                  kfaultref3=kfaultref+1+(n1double-1)

                  #nodecheck=int(Element_Nodes[3][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #print kfaultref1, Node[0][kfaultref1],Node[1][kfaultref1],Node[2][kfaultref1]

                  #nodecheck=int(Element_Nodes[4][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #print kfaultref2, Node[0][kfaultref2],Node[1][kfaultref2],Node[2][kfaultref2]

                  #nodecheck=int(Element_Nodes[7][kint] )
                  #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
                  #print kfaultref3, Node[0][kfaultref3],Node[1][kfaultref3],Node[2][kfaultref3]


                  Element_Nodes[3][kint]=kfaultref1
                  Element_Nodes[4][kint]=kfaultref2
                  Element_Nodes[7][kint]=kfaultref3
                   #elif x1<x1e:
                   #     kfaultref1=kfaultref+M1f
                   #     Element_Nodes[3][kint]=kfaultref1
                   #elif x2<x2e: 
                   #     kfaultref2=kfaultref+M2f
                   #     Element_Nodes[4][kint]=kfaultref2

  
               # print kint, kfaultref

   # write interior elements to file
   Element_Type='Hex8'
   meshfaultL.write("%s %d\n"%(Element_Type,Element_Num))

   for i in range(Element_Num):    
       meshfaultL.write("%d %d"%(Element_ref[i],Element_tag[i]))
       for j in range(Element_numNodes): 
           meshfaultL.write(" %d"%Element_Nodes[j][i])    
       meshfaultL.write("\n")

   # face elements
   FaceElement_Type='Hex8Face'
   FaceElement_Num= 2*(ne0*ne1 + ne0*ne2 + ne1*ne2)
   FaceElement_numNodes=8

   meshfaultL.write("%s %d\n"%(FaceElement_Type,FaceElement_Num))

   FaceElement_Nodes=zeros([FaceElement_numNodes,FaceElement_Num],float64)
   FaceElement_ref=zeros(FaceElement_Num,float64)
   FaceElement_tag=zeros(FaceElement_Num,float64)
   
   kcount=0

   # defining face elements on x2=0 face
   for i1 in range (ne1):
       for i0 in range(ne0):
          i2=0
          k=i0 + ne0*i1 + ne0*ne1*i2;
          # define corner node (node0)
          node0=i0 + N0*i1 + N0*N1*i2;
          FaceElement_ref[kcount]=kcount
          FaceElement_tag[kcount]=3
          # for hex8face the face elements are specified by 8 nodes
          FaceElement_Nodes[0][kcount]=node0;
          FaceElement_Nodes[1][kcount]=node0+1;
          FaceElement_Nodes[2][kcount]=node0+N0+1;
          FaceElement_Nodes[3][kcount]=node0+N0;
          FaceElement_Nodes[4][kcount]=node0+N0*N1;
          FaceElement_Nodes[5][kcount]=node0+N0*N1+1;
          FaceElement_Nodes[6][kcount]=node0+N0*N1+N0+1;
          FaceElement_Nodes[7][kcount]=node0+N0*N1+N0;
          kcount+=1

   # defining face elements on x2=L face
   for i1 in range (ne1):
       for i0 in range(ne0):
          i2=ne2-1
          k=i0 + ne0*i1 + ne0*ne1*i2;
          # define corner node (node0)
          node0=i0 + N0*i1 + N0*N1*i2;
          FaceElement_ref[kcount]=kcount
          FaceElement_tag[kcount]=3
          # for hex8face the face elements are specified by 8 nodes
          FaceElement_Nodes[0][kcount]=node0+N0*N1;
          FaceElement_Nodes[1][kcount]=node0+N0*N1+1;
          FaceElement_Nodes[2][kcount]=node0+N0*N1+N0+1;
          FaceElement_Nodes[3][kcount]=node0+N0*N1+N0;
          FaceElement_Nodes[4][kcount]=node0;
          FaceElement_Nodes[5][kcount]=node0+1;
          FaceElement_Nodes[6][kcount]=node0+N0+1;
          FaceElement_Nodes[7][kcount]=node0+N0;
          kcount+=1

   # defining face elements on x1=0 face
   for i2 in range (ne2):
       for i0 in range(ne0):
          i1=0
          k=i0 + ne0*i1 + ne0*ne1*i2;
          # define corner node (node0)
          node0=i0 + N0*i1 + N0*N1*i2;
          FaceElement_ref[kcount]=kcount
          FaceElement_tag[kcount]=3
          # for hex8face the face elements are specified by 8 nodes
          FaceElement_Nodes[0][kcount]=node0;
          FaceElement_Nodes[1][kcount]=node0+N0*N1;
          FaceElement_Nodes[2][kcount]=node0+N0*N1+1;
          FaceElement_Nodes[3][kcount]=node0+1;
          FaceElement_Nodes[4][kcount]=node0+N0;
          FaceElement_Nodes[5][kcount]=node0+N0*N1+N0;
          FaceElement_Nodes[6][kcount]=node0+N0*N1+N0+1;
          FaceElement_Nodes[7][kcount]=node0+N0+1;
          kcount+=1

   # defining face elements on x1=L face
   for i2 in range (ne2):
       for i0 in range(ne0):
          i1=ne1-1
          k=i0 + ne0*i1 + ne0*ne1*i2;
          # define corner node (node0)
          node0=i0 + N0*i1 + N0*N1*i2;
          FaceElement_ref[kcount]=kcount
          FaceElement_tag[kcount]=3
          # for hex8face the face elements are specified by 8 nodes
          FaceElement_Nodes[0][kcount]=node0+N0;
          FaceElement_Nodes[1][kcount]=node0+N0*N1+N0;
          FaceElement_Nodes[2][kcount]=node0+N0*N1+N0+1;
          FaceElement_Nodes[3][kcount]=node0+N0+1;
          FaceElement_Nodes[4][kcount]=node0;
          FaceElement_Nodes[5][kcount]=node0+N0*N1;
          FaceElement_Nodes[6][kcount]=node0+N0*N1+1;
          FaceElement_Nodes[7][kcount]=node0+1;
          kcount+=1

   # defining face elements on x0=0 face
   for i2 in range (ne2):
       for i1 in range(ne1):
          i0=0
          k=i0 + ne0*i1 + ne0*ne1*i2;
          # define corner node (node0)
          node0=i0 + N0*i1 + N0*N1*i2;
          FaceElement_ref[kcount]=kcount
          FaceElement_tag[kcount]=3
          # for hex8face the face elements are specified by 8 nodes
          FaceElement_Nodes[0][kcount]=node0;
          FaceElement_Nodes[1][kcount]=node0+N0;
          FaceElement_Nodes[2][kcount]=node0+N0*N1+N0;
          FaceElement_Nodes[3][kcount]=node0+N0*N1;
          FaceElement_Nodes[4][kcount]=node0+1;
          FaceElement_Nodes[5][kcount]=node0+N0+1;
          FaceElement_Nodes[6][kcount]=node0+N0*N1+N0+1;
          FaceElement_Nodes[7][kcount]=node0+N0*N1+1;
          kcount+=1

   # defining face elements on x0=L face
   for i2 in range (ne2):
       for i1 in range(ne1):
          i0=ne1-1
          k=i0 + ne0*i1 + ne0*ne1*i2;
          # define corner node (node0)
          node0=i0 + N0*i1 + N0*N1*i2;
          FaceElement_ref[kcount]=kcount
          FaceElement_tag[kcount]=3
          # for hex8face the face elements are specified by 8 nodes
          FaceElement_Nodes[0][kcount]=node0+1;
          FaceElement_Nodes[1][kcount]=node0+N0+1;
          FaceElement_Nodes[2][kcount]=node0+N0*N1+N0+1;
          FaceElement_Nodes[3][kcount]=node0+N0*N1+1;
          FaceElement_Nodes[4][kcount]=node0;
          FaceElement_Nodes[5][kcount]=node0+N0;
          FaceElement_Nodes[6][kcount]=node0+N0*N1+N0;
          FaceElement_Nodes[7][kcount]=node0+N0*N1;
          kcount+=1




   for i in range(FaceElement_Num):    
       meshfaultL.write("%d %d"%(FaceElement_ref[i],FaceElement_tag[i]))
       for j in range(FaceElement_numNodes): 
           meshfaultL.write(" %d"%FaceElement_Nodes[j][i])
       meshfaultL.write("\n")


   # contact elements   
   ContactElement_Type='Hex8Face_Contact'
   ContactElement_Num=0
   ContactElement_numNodes=16
   # print contact elements on fault
   if contact==True:
      if n0double==0:
         ContactElement_Num=(n1double)*(n2double)
         ContactElement_Nodes=zeros([ContactElement_numNodes,ContactElement_Num],float64)
         ContactElement_ref=zeros(ContactElement_Num,float64)
         ContactElement_tag=zeros(ContactElement_Num,float64)
         #print ContactElement_Num

         for i2 in range(n2double):
            for i1 in range(n1double):
               k=i1+(n1double)*i2
               #print k
               # define reference for interior elements with x0<=x0s
               # here the nodes are the old interior nodes
               kintold=int((i0start-1) + ne0*(i1start+i1) + ne0*ne1*(i2start+i2))

               # define reference for interior elements with x0>x0s
               # here the double nodes are the fault nodes

               kintfault=int(i0start + ne0*(i1start+i1) + ne0*ne1*(i2start+i2))

               #nodecheck=int(Element_Nodes[1][kintold] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
               #nodecheck=int(Element_Nodes[0][kintfault] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

               #nodecheck=int(Element_Nodes[2][kintold] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
               #nodecheck=int(Element_Nodes[3][kintfault] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

               #nodecheck=int(Element_Nodes[6][kintold] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
               #nodecheck=int(Element_Nodes[7][kintfault] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

               #nodecheck=int(Element_Nodes[5][kintold] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]
               #nodecheck=int(Element_Nodes[4][kintfault] )
               #print nodecheck, Node[0][nodecheck],Node[1][nodecheck],Node[2][nodecheck]

               ContactElement_ref[k]=k
               ContactElement_tag[k]=2

               ContactElement_Nodes[0][k]=Element_Nodes[1][kintold]  
               ContactElement_Nodes[1][k]=Element_Nodes[2][kintold]
               ContactElement_Nodes[2][k]=Element_Nodes[6][kintold]
               ContactElement_Nodes[3][k]=Element_Nodes[5][kintold]
               ContactElement_Nodes[4][k]=Element_Nodes[0][kintold]
               ContactElement_Nodes[5][k]=Element_Nodes[3][kintold]
               ContactElement_Nodes[6][k]=Element_Nodes[7][kintold]
               ContactElement_Nodes[7][k]=Element_Nodes[4][kintold]

               ContactElement_Nodes[8][k]=Element_Nodes[0][kintfault]
               ContactElement_Nodes[9][k]=Element_Nodes[3][kintfault]
               ContactElement_Nodes[10][k]=Element_Nodes[7][kintfault]
               ContactElement_Nodes[11][k]=Element_Nodes[4][kintfault]
               ContactElement_Nodes[12][k]=Element_Nodes[1][kintfault]
               ContactElement_Nodes[13][k]=Element_Nodes[2][kintfault]
               ContactElement_Nodes[14][k]=Element_Nodes[6][kintfault]
               ContactElement_Nodes[15][k]=Element_Nodes[5][kintfault]

   meshfaultL.write("%s %d\n"%(ContactElement_Type,ContactElement_Num))

   for i in range(ContactElement_Num):
        meshfaultL.write("%d %d"%(ContactElement_ref[i],ContactElement_tag[i]))
        for j in range(ContactElement_numNodes): 
            meshfaultL.write(" %d"%ContactElement_Nodes[j][i])
        meshfaultL.write("\n")

   # point sources (not supported yet)

   meshfaultL.write("Point1 0")



   meshfaultL.close() 


ne_w=int((ne/height)*width+0.5)
mydomainfile = faultL(width,width, height,ne, ne, ne_w,contact=True,xstart=fstart,xend=fend)