1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
##############################################################################
#
# Copyright (c) 2003-2020 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
# Development from 2019 by School of Earth and Environmental Sciences
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2020 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
Some models for heat advection-diffusion
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Lutz Gross, l.gross@uq.edu.au"
from . import escriptcpp as escore
from . import linearPDEs as lpe
from . import util
class TemperatureCartesian(lpe.TransportPDE):
"""
Represents and solves the temperature advection-diffusion problem
*rhocp(T_{,t} + v_i T_{,i} - ( k T_{,i})_i = Q*
*k T_{,i}*n_i=surface_flux* and *T_{,t} = 0* where ``given_T_mask``>0.
If surface_flux is not given 0 is assumed.
Typical usage::
sp = TemperatureCartesian(domain)
sp.setTolerance(1.e-4)
t = 0
T = ...
sp.setValues(rhocp=..., v=..., k=..., given_T_mask=...)
sp.setInitialTemperature(T)
while t < t_end:
sp.setValue(Q=...)
T = sp.getTemperature(dt)
t += dt
"""
def __init__(self,domain,**kwargs):
"""
Initializes the temperature advection-diffusion problem.
:param domain: domain of the problem
:note: the approximation order is switched to reduced if the approximation order is nnot linear (equal to 1).
"""
lpe.TransportPDE.__init__(self,domain,numEquations=1, **kwargs)
order=escore.Solution(domain).getApproximationOrder()
if order>1:
if escore.ReducedSolution(domain).getApproximationOrder()>1: raise ValueError("Reduced order needs to be equal to 1.")
self.setReducedOrderOn()
else:
self.setReducedOrderOff()
self.__rhocp=None
self.__v=None
def setInitialTemperature(self,T):
"""
Same as `setInitialSolution`.
"""
self.setInitialSolution(T)
def setValue(self,rhocp=None,v=None,k=None,Q=None,surface_flux=None,given_T_mask=None):
if rhocp is not None:
self.__rhocp=rhocp
if v is not None:
self.__v=v
if rhocp is not None:
super(TemperatureCartesian,self).setValue(M=self.__rhocp)
if (rhocp is not None or v is not None) and self.__rhocp is not None and self.__v is not None:
super(TemperatureCartesian,self).setValue(C=-self.__rhocp*self.__v)
if k is not None:
super(TemperatureCartesian,self).setValue(A=-k*util.kronecker(self.getDomain()))
if Q is not None:
super(TemperatureCartesian,self).setValue(Y=Q)
if surface_flux is not None:
super(TemperatureCartesian,self).setValue(y=surface_flux)
if given_T_mask is not None:
super(TemperatureCartesian,self).setValue(q=given_T_mask)
def getTemperature(self,dt,**kwargs):
"""
Same as `getSolution`.
"""
return self.getSolution(dt,**kwargs)
class Tracer(lpe.TransportPDE):
"""
Represents and solves the tracer problem
*C_{,t} + v_i C_{,i} - ( k T_{,i})_i) = 0*
*C_{,t} = 0* where ``given_C_mask``>0.
*C_{,i}*n_i=0*
Typical usage::
sp = Tracer(domain)
sp.setTolerance(1.e-4)
t = 0
T = ...
sp.setValues(given_C_mask=...)
sp.setInitialTracer(C)
while t < t_end:
sp.setValue(v=...)
dt.getSaveTimeStepSize()
C = sp.getTracer(dt)
t += dt
"""
def __init__(self,domain,useBackwardEuler=False,**kwargs):
"""
Initializes the Tracer advection problem
:param domain: domain of the problem
:param useBackwardEuler: if set the backward Euler scheme is used. Otherwise the Crank-Nicholson scheme is applied. Not that backward Euler scheme will return a safe time step size which is practically infinity as the scheme is unconditional unstable. So other measures need to be applied to control the time step size. The Crank-Nicholson scheme provides a higher accuracy but requires to limit the time step size to be stable.
:type useBackwardEuler: ``bool``
:note: the approximation order is switched to reduced if the approximation order is nnot linear (equal to 1).
"""
lpe.TransportPDE.__init__(self,domain,numEquations=1,useBackwardEuler=useBackwardEuler,**kwargs)
order=escore.Solution(domain).getApproximationOrder()
if order>1:
if escore.ReducedSolution(domain).getApproximationOrder()>1: raise ValueError("Reduced order needs to be equal to 1.")
self.setReducedOrderOn()
else:
self.setReducedOrderOff()
super(Tracer,self).setValue(M=1.)
def setInitialTracer(self,C):
"""
Same as `setInitialSolution`.
"""
self.setInitialSolution(C)
def setValue(self, v=None, given_C_mask=None, k=None):
if v is not None:
super(Tracer,self).setValue(C=-v)
if k is not None:
super(Tracer,self).setValue(A=-k*util.kronecker(self.getDomain()))
if given_C_mask is not None:
super(Tracer,self).setValue(q=given_C_mask)
def getTracer(self,dt,**kwargs):
"""
Same as `getSolution`.
"""
return self.getSolution(dt,**kwargs)
|