File: test_simplesolve.py

package info (click to toggle)
python-escript 5.6-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,304 kB
  • sloc: python: 592,074; cpp: 136,909; ansic: 18,675; javascript: 9,411; xml: 3,384; sh: 738; makefile: 207
file content (378 lines) | stat: -rw-r--r-- 14,280 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

##############################################################################
#
# Copyright (c) 2003-2018 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2018 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

"""
Generic base class for PDE solving tests
"""

from esys.escript import Data, Function, Lsup, Solution, Tensor4, Vector, \
                         grad, inner, kronecker, matrixmult, whereZero, hasFeature
from esys.escript.linearPDEs import LinearPDE, SolverOptions
import esys.escriptcore.utestselect as unittest
import numpy

HAVE_DIRECT_PASO = hasFeature('paso') and (hasFeature('umfpack') or hasFeature("mkl") or hasFeature("mumps"))
HAVE_MUMPS = hasFeature("mumps")
HAVE_TRILINOS = hasFeature('trilinos')
HAVE_SOLVER = HAVE_DIRECT_PASO or HAVE_TRILINOS
HAVE_SOLVER_COMPLEX = HAVE_TRILINOS or HAVE_MUMPS

class SolveTestCaseTemplate(unittest.TestCase):
    """
    this is the template class for testing solvers:
    """
    REL_TOL = 1.e-6
    SOLVER_VERBOSE = False
    SOLVER_TOL = 1.e-8

    # the following members must be set by the test methods in subclasses
    domain = None
    package = None
    method = None
    preconditioner = SolverOptions.NO_PRECONDITIONER


    def getPDE(self, system, iscomplex=False):
        dim = self.domain.getDim()
        if system:
            pde=LinearPDE(self.domain, numEquations=dim, isComplex=iscomplex)
        else:
            pde=LinearPDE(self.domain, numEquations=1, isComplex=iscomplex)

        self.setCoefficients(pde, system)
        so = pde.getSolverOptions()
        so.setPackage(self.package)
        so.setSolverMethod(self.method)
        so.setPreconditioner(self.preconditioner)
        so.setTolerance(self.SOLVER_TOL)
        so.setVerbosity(self.SOLVER_VERBOSE)
        pde.setSolverOptions(so)
        return pde, self.getSolution(system), self.getGrad(system)

    

class SolveTestCaseOrder1(SolveTestCaseTemplate):
    """
    this is the class for testing solvers for order 1 meshes:
    """

    def getGrad(self, system):
        """returns exact gradient"""
        dim = self.domain.getDim()
        if system:
            g_ex = Data(0., (dim,dim), Solution(self.domain))
            if dim == 2:
                g_ex[0,0] = 2.
                g_ex[0,1] = 3.
                g_ex[1,0] = 3.
                g_ex[1,1] = 2.
            else:
                g_ex[0,0] = 2.
                g_ex[0,1] = 3.
                g_ex[0,2] = 4.
                g_ex[1,0] = 4.
                g_ex[1,1] = 1.
                g_ex[1,2] = -2.
                g_ex[2,0] = 8.
                g_ex[2,1] = 4.
                g_ex[2,2] = 5.
        else:
            g_ex = Data(0., (dim,), Solution(self.domain))
            if dim == 2:
                g_ex[0] = 2.
                g_ex[1] = 3.
            else:
                g_ex[0] = 2.
                g_ex[1] = 3.
                g_ex[2] = 4.
        return g_ex

    def getSolution(self, system):
        """returns exact solution"""
        dim = self.domain.getDim()
        x = Solution(self.domain).getX()
        if system:
            u_ex = Vector(0., Solution(self.domain))
            if dim == 2:
                u_ex[0] =  1.+2.*x[0]+3.*x[1]
                u_ex[1] = -1.+3.*x[0]+2.*x[1]
            else:
                u_ex[0] =  1.+2.*x[0]+3.*x[1]+4.*x[2]
                u_ex[1] = -1.+4.*x[0]+1.*x[1]-2.*x[2]
                u_ex[2] =  5.+8.*x[0]+4.*x[1]+5.*x[2]
        else:
            if dim == 2:
                u_ex = 1.+2.*x[0]+3.*x[1]
            else:
                u_ex = 1.+2.*x[0]+3.*x[1]+4.*x[2]
        return u_ex
    
    def setCoefficients(self, pde, system):
        """sets PDE coefficients"""
        FAC_DIAG = self.FAC_DIAG
        FAC_OFFDIAG =self.FAC_OFFDIAG
        x = Solution(self.domain).getX()
        mask = whereZero(x[0])
        dim = self.domain.getDim()
        u_ex = self.getSolution(system)
        g_ex = self.getGrad(system)

        if system:
            A = Tensor4(0., Function(self.domain))
            for i in range(dim):
                A[i,:,i,:] = kronecker(dim)

            Y = Vector(0., Function(self.domain))
            if dim == 2:
                Y[0] = u_ex[0]*FAC_DIAG+u_ex[1]*FAC_OFFDIAG
                Y[1] = u_ex[1]*FAC_DIAG+u_ex[0]*FAC_OFFDIAG
            else:
                Y[0] = u_ex[0]*FAC_DIAG+u_ex[2]*FAC_OFFDIAG+u_ex[1]*FAC_OFFDIAG
                Y[1] = u_ex[1]*FAC_DIAG+u_ex[0]*FAC_OFFDIAG+u_ex[2]*FAC_OFFDIAG
                Y[2] = u_ex[2]*FAC_DIAG+u_ex[1]*FAC_OFFDIAG+u_ex[0]*FAC_OFFDIAG
            pde.setValue(r=u_ex, q=mask*numpy.ones(dim,),
                         A=A,
                         D=kronecker(dim)*(FAC_DIAG-FAC_OFFDIAG)+numpy.ones((dim,dim))*FAC_OFFDIAG,
                         Y=Y,
                         y=matrixmult(g_ex,self.domain.getNormal()))
        else:
            pde.setValue(r=u_ex, q=mask, A=kronecker(dim),
                         y=inner(g_ex, self.domain.getNormal()))

    
class SolveTestCaseOrder2(SolveTestCaseTemplate):
    """
    this is the class for testing solvers for order 2 meshes:
    """
    
    def getGrad(self, system):
        """returns exact gradient"""
        dim = self.domain.getDim()
        x = Solution(self.domain).getX()
        if system:
            g_ex = Data(0., (dim,dim), Solution(self.domain))
            if dim == 2:
                g_ex[0,0] = 2.+8.*x[0]+ 5.*x[1]
                g_ex[0,1] = 3.+5.*x[0]+12.*x[1]
                g_ex[1,0] = 4.+2.*x[0]+ 6.*x[1]
                g_ex[1,1] = 2.+6.*x[0]+ 8.*x[1]
            else:
                g_ex[0,0] =  2.+6.*x[1]+8.*x[2]+18.*x[0]
                g_ex[0,1] =  3.+6.*x[0]+7.*x[2]+20.*x[1]
                g_ex[0,2] =  4.+7.*x[1]+8.*x[0]+22.*x[2]
                g_ex[1,0] =  4.+3.*x[1]-8.*x[2]- 4.*x[0]
                g_ex[1,1] =  1.+3.*x[0]+2.*x[2]+14.*x[1]
                g_ex[1,2] = -6.+2.*x[1]-8.*x[0]+10.*x[2]
                g_ex[2,0] =  7.-6.*x[1]+2.*x[2]+ 4.*x[0]
                g_ex[2,1] =  9.-6.*x[0]+8.*x[2]+16.*x[1]
                g_ex[2,2] =  2.+8.*x[1]+2.*x[0]+ 2.*x[2]
        else:
            g_ex = Data(0., (dim,), Solution(self.domain))
            if dim == 2:
                g_ex[0] = 2.+8.*x[0]+5.*x[1]
                g_ex[1] = 3.+5.*x[0]+12.*x[1]
            else:
                g_ex[0] = 2.+6.*x[1]+8.*x[2]+18.*x[0]
                g_ex[1] = 3.+6.*x[0]+7.*x[2]+20.*x[1]
                g_ex[2] = 4.+7.*x[1]+8.*x[0]+22.*x[2]
        return g_ex

    def getSolution(self, system):
        """returns exact solution"""
        dim = self.domain.getDim()
        x = Solution(self.domain).getX()
        if system:
            u_ex = Vector(0., Solution(self.domain))
            if dim == 2:
                u_ex[0] =  1.+2.*x[0]+3.*x[1]+4.*x[0]**2+5.*x[1]*x[0]+6.*x[1]**2
                u_ex[1] = -1.+4.*x[0]+2.*x[1]+1.*x[0]**2+6.*x[1]*x[0]+4.*x[1]**2
            else:
                u_ex[0] = 1.+2.*x[0]+3.*x[1]+4.*x[2]+\
                          6.*x[0]*x[1]+7.*x[1]*x[2]+8.*x[2]*x[0]+\
                          9.*x[0]**2+10.*x[1]**2+11.*x[2]**2
                u_ex[1] = 2.+4.*x[0]+1.*x[1]-6.*x[2]+\
                          3.*x[0]*x[1]+2.*x[1]*x[2]-8.*x[2]*x[0]-\
                          2.*x[0]**2+7.*x[1]**2+5.*x[2]**2
                u_ex[2] = -2.+7.*x[0]+9.*x[1]+2*x[2]-\
                          6.*x[0]*x[1]+8.*x[1]*x[2]+2.*x[2]*x[0]+\
                          2.*x[0]**2+8.*x[1]**2+1.*x[2]**2
        else:
            if dim == 2:
                u_ex = 1.+2.*x[0]+3.*x[1]+4.*x[0]**2+5.*x[1]*x[0]+6.*x[1]**2
            else:
                u_ex = 1.+2.*x[0]+3.*x[1]+4.*x[2]+\
                       6.*x[0]*x[1]+7.*x[1]*x[2]+8.*x[2]*x[0]+\
                       9.*x[0]**2+10.*x[1]**2+11.*x[2]**2
        return u_ex

    def setCoefficients(self, pde, system):
        """sets PDE coefficients"""        
        FAC_DIAG = self.FAC_DIAG
        FAC_OFFDIAG =self.FAC_OFFDIAG
        x = Solution(self.domain).getX()
        mask = whereZero(x[0])
        dim = self.domain.getDim()
        u_ex = self.getSolution(system)
        g_ex = self.getGrad(system)

        if system:
            A = Tensor4(0., Function(self.domain))
            for i in range(dim):
                A[i,:,i,:] = kronecker(dim)

            Y = Vector(0., Function(self.domain))
            if dim == 2:
                Y[0] = u_ex[0]*FAC_DIAG+u_ex[1]*FAC_OFFDIAG-20
                Y[1] = u_ex[1]*FAC_DIAG+u_ex[0]*FAC_OFFDIAG-10
            else:
                Y[0] = u_ex[0]*FAC_DIAG+u_ex[2]*FAC_OFFDIAG+u_ex[1]*FAC_OFFDIAG-60
                Y[1] = u_ex[1]*FAC_DIAG+u_ex[0]*FAC_OFFDIAG+u_ex[2]*FAC_OFFDIAG-20
                Y[2] = u_ex[2]*FAC_DIAG+u_ex[1]*FAC_OFFDIAG+u_ex[0]*FAC_OFFDIAG-22
            pde.setValue(r=u_ex, q=mask*numpy.ones(dim,),
                         A=A,
                         D=kronecker(dim)*(FAC_DIAG-FAC_OFFDIAG)+numpy.ones((dim,dim))*FAC_OFFDIAG,
                         Y=Y,
                         y=matrixmult(g_ex,self.domain.getNormal()))
        else:
            pde.setValue(r=u_ex, q=mask, A=kronecker(dim),
                         y=inner(g_ex, self.domain.getNormal()))
            if dim == 2:
                pde.setValue(Y=-20.)
            else:
                pde.setValue(Y=-60.)


class SimpleSolveTestCase(SolveTestCaseOrder1):
    """
    testing the real PDEs 
    """
    FAC_DIAG = 1.
    FAC_OFFDIAG = -0.4
    def test_single(self):
        pde, u_ex, g_ex = self.getPDE(False)
        g=grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        self.assertFalse(u.isComplex())
        self.assertEqual(u.getShape(), ( ))
        error = Lsup(u-u_ex)
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)

    @unittest.skipIf(not HAVE_SOLVER, "No solver available")
    def test_system(self):
        pde, u_ex, g_ex = self.getPDE(True)
        g = grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        self.assertFalse(u.isComplex())
        self.assertEqual(u.getShape(), (pde.getDim(), ))
        error = Lsup(u-u_ex)
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)

class SimpleSolveTestCaseOrder2(SolveTestCaseOrder2):
    """
    testing the real PDEs 
    """
    FAC_DIAG = 1.
    FAC_OFFDIAG = -0.4
    def test_single(self):
        pde, u_ex, g_ex = self.getPDE(False)
        g=grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        self.assertFalse(u.isComplex())
        self.assertEqual(u.getShape(), ( ))
        error = Lsup(u-u_ex)
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)

    @unittest.skipIf(not HAVE_SOLVER, "No solver available")
    def test_system(self):
        pde, u_ex, g_ex = self.getPDE(True)
        g = grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        error = Lsup(u-u_ex)
        self.assertFalse(u.isComplex())
        self.assertEqual(u.getShape(), (pde.getDim(), ))
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)
        
class ComplexSolveTestCase(SolveTestCaseOrder1):
    """
    testing the complex PDEs 
    """
    FAC_DIAG = 1.+0.2j
    FAC_OFFDIAG = -0.4

    @unittest.skipIf(not HAVE_SOLVER_COMPLEX, "No solver available")
    def test_singlecomplex(self):
        pde, u_ex, g_ex = self.getPDE(False, iscomplex=True)
        g=grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        error = Lsup(u-u_ex)
        self.assertTrue(u.isComplex())
        self.assertEqual(u.getShape(), ())
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)

    @unittest.skipIf(not HAVE_SOLVER_COMPLEX, "No solver available")
    def test_systemcomplex(self):
        pde, u_ex, g_ex = self.getPDE(True, iscomplex=True)
        g = grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        error = Lsup(u-u_ex)
        
        self.assertTrue(u.isComplex())
        self.assertEqual(u.getShape(), (pde.getDim(),))
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)
        
class ComplexSolveTestCaseOrder2(SolveTestCaseOrder2):
    """
    testing the complex  PDEs for order 2 meshes 
    """
    FAC_DIAG = 1.+0.2j
    FAC_OFFDIAG = -0.4

    @unittest.skipIf(not HAVE_SOLVER_COMPLEX, "No solver available")
    def test_singlecomplex(self):
        pde, u_ex, g_ex = self.getPDE(False, iscomplex=True)
        g=grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        self.assertTrue(u.isComplex())
        self.assertEqual(u.getShape(), ( ))
        error = Lsup(u-u_ex)
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)

    @unittest.skipIf(not HAVE_SOLVER_COMPLEX, "No solver available")
    def test_systemcomplex(self):
        pde, u_ex, g_ex = self.getPDE(True, iscomplex=True)
        g = grad(u_ex)
        self.assertLess(Lsup(g_ex-g), self.REL_TOL*Lsup(g_ex))
        u = pde.getSolution()
        error = Lsup(u-u_ex)
        self.assertTrue(u.isComplex())
        self.assertEqual(u.getShape(), (pde.getDim(), ))
        self.assertLess(error, self.REL_TOL*Lsup(u_ex), "solution error %s is too big."%error)